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One of the most fundamental functions of the brain is to predict
upcoming events on the basis of the recent past. A closely related
function is to signal when a prediction has been violated. The
identity of the brain regions that mediate these functions is not
known. We set out to determine whether they are implemented at
the level of single neurons in the visual system. We gave monkeys
prolonged exposure to pairs of images presented in fixed
sequence so that each leading image became a strong predictor
for the corresponding trailing image. We then monitored the
responses of neurons in the inferotemporal cortex to image
sequences that obeyed or violated the transitional rules imposed
during training. Inferotemporal neurons exhibited a transitional
surprise effect, responding much more strongly to unpredicted
transitions than to predicted transitions. Thus, neurons even in the
visual system make experience-based predictions and react when
they fail.
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The inferotemporal cortex (ITC), the terminus of the ventral
streamof visual areas (1), plays a critical role in object vision (2,

3). ITC neurons respond with individual patterns of selectivity to
complex images (4). Training monkeys to discriminate between
images (5–7), categorize them (8, 9), or form associations between
them (10–12) induces functional changes among neurons in the
ITC which have the effect of strengthening the representation of
image attributes relevant to task performance. Even passive
viewing causes changes in neuronal visual responsiveness. Re-
peated viewing of a single image leads to a weakening of responses
to it (13, 14). Repeated viewing of two images close together in
time leads to pair coding: a tendency for neurons responsive to one
image also to respond to the other (15–17). The effects of passive
viewing, because they do not depend on task demands, fall into the
category of unsupervised statistical learning.
An important form of unsupervised learning not previously

studied at the level of single neurons concerns transitional sta-
tistics. The learning of transitional statistics has been the focus of
much behavioral study in humans because it is thought to un-
derlie the development during infancy of the ability to perceive
event boundaries including word boundaries in speech (18, 19).
Human infants passively exposed to a stimulus stream in which
certain visual images always follow certain others automatically
register the transitional rules as evidenced by their orienting
preferentially to a test stream containing novel transitions (20).
The adult human brain is sensitive to transitional probabilities, as
evidenced by its generating strong responses to improbable
transitions at the level of scalp potential and blood oxygenation
measures (21–27). Monkeys, like human infants, have been
reported to learn transitional probabilities and to orient prefer-
entially to improbable transitions (28). No effort has been made
as yet to characterize the underlying neuronal mechanisms (29).
We hypothesized that neurons in the ITC would acquire sensi-
tivity to the transitional statistics of visual displays over the
course of prolonged training and would manifest this sensitivity
in subsequent tests by responding strongly to events violating the
transitional rules imposed during training.

Results
We began by exposing two monkeys repeatedly to six pairs of
images. Each pair consisted of a leading image and a trailing
image (AmBn, m = n) as shown in Fig. 1A. On each trial, while
the monkey looked at the center of the screen, the two images
appeared in immediate succession at fixation for half a second
each. The monkey was rewarded at the end of the trial subject to
the sole requirement of having maintained fixation. Over the
course of training, each pair was presented more than 800 times,
always in the same order (Fig. 1A, blue counts). The training
runs were distributed across 3 mo in monkey 1 and 1 mo in
monkey 2. Following training, we began to collect data from
single ITC neurons in microelectrode recording sessions. The
essential question was whether trailing image Bn would elicit an
enhanced response when it violated prediction by appearing af-
ter a leading image other than its training partner (Am, m ≠ n).
To answer this question, we used a procedure identical to the
training procedure except that the trained sequences and all
possible untrained sequences were presented in interleaved tri-
als. An untrained sequence consisted of a leading image and
a trailing image that belonged to different training pairs. To
minimize any attenuation of the effects of training, we adopted
a design in which each of the six trained sequences was presented
eight times in a full run, whereas each of the 30 untrained
sequences was presented only once (Fig. 1A, black counts). Us-
ing this procedure, we collected data from 81 visually responsive
ITC neurons (46 in monkey 1 and 35 in monkey 2).
In some neurons, the trailing image clearly elicited a stronger

response when it was unpredicted (Fig. 1C) than when it was
predicted (Fig. 1B). To determine whether this pattern was con-
sistent across the population, we constructed plots representing
the mean population firing rate as a function of time in trials in
which the trailing image was either predicted or unpredicted (Fig.
2A). The population obviously responded much more strongly
when the trailing image was unpredicted (red curve) than when it
was predicted (blue curve). This effect was statistically significant
at the population level (paired t test, n = 81, P = 1.5e−11; P <
0.0005 in each monkey) and achieved significance in 33 of 81
neurons considered individually (ANOVA with prediction status
and image identity as factors, α = 0.05). It also was significant at
the level of the local field potential (LFP) (paired t test, n = 71,
P= 2.0e−9; P < 0.001 in each monkey). We refer to the stronger
response in trials involving an unpredicted transition as a transi-
tional surprise effect.
To assess whether the transitional surprise effect was associ-

ated with a more robust representation of image identity, we
ranked the trailing images for each neuron from the least
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effective (rank 1) to the most effective (rank 6) using a measure
that gave equal weight to predicted and unpredicted trials. Then
we computed the average firing rate, across all neurons, elicited
by images of rank 1 through 6 when they were predicted and
when they were unpredicted. On fitting a line to the six points
representing unpredicted as a function of predicted firing rate (Fig.
2B), we found that the slope (1.5) was significantly (P < 1.0e−7)
greater than 1. The intercept was not significantly different from 0.
One consequence of the increase in response gain was that the
spread of firing rates across images was greater when they were
unpredicted than when they were predicted. This effect could be
expected to increase useable information about image identity. To
determine whether it did so, we carried out a signal detection
analysis on data from each neuron. We found that the neuronal
firing rate carried significantly more information about which im-
age had been presented if the image was unpredicted than if it was
predicted (Figs. S1 and S2).
The detection of a prediction-violating event might require

processing time beyond the onset of the visual response. To

explore this possibility, we investigated the timing of stimulus-
driven activity among 33 neurons significantly more responsive to
unpredicted than to predicted images. There were three main
findings. First, the latency of the response to the trailing image was
longer than the latency of the response to the leading image (Fig.
2C). This difference probably was not an effect of training. The
response to an image is delayed if it displaces another image in-
stead of appearing against a blank background (30). Second, the
trailing image elicited a slightly but significantly earlier response if
it was predicted than if it was unpredicted (Fig. 2C; Wilcoxon test,
time to half height, n = 33, P = 0.011). This difference may be
related to the fact that a match image elicits a slightly earlier re-
sponse than a nonmatch image in a delayed-match-to-sample task
(30). Third, and most importantly, the transitional surprise signal
(the difference in firing rate between unpredicted and predicted
trials) developed at a time statistically indistinguishable from the
time of the response to the unpredicted trailing image (Fig. 2C;
Wilcoxon test, time to half height, n=33, P=0.91). From the last

Fig. 1. Pairs of images were presented in sequence during training and neuronal recording. (A) Six leading images (A1–A6) and six trailing images (B1–B6).
Numbers indicate how many exposures to each pair occurred during training (blue counts) and subsequently during each recording run (black counts). On
each trial, during both training and testing, a leading image and a trailing image were presented in succession at screen center with the following measured
timing: leading image (503 ms), gap (18 ms), and trailing image (507 ms). (B) Data from one neuron. Each histogram represents mean firing rate as a function
of time across eight trials in which the leading image and trailing image were paired as they had been during training (AmBn, m = n). The leading and trailing
images were visible during periods demarcated by dashed lines and shaded with red and green, respectively. (C) Data from the same neuron. Each histogram
represents firing on five trials in which the trailing image followed the five leading images not paired with it during training (AmBn, m ≠ n).

Fig. 2. Neuronal responses to unpredicted images were enhanced in strength and selectivity from their outset. (A) The population firing rate elicited by the
trailing image was greater when it followed another image’s predictor (red curve) than when it followed its own predictor (blue curve). Data shown are the
mean across all 81 neurons in 20-ms bins. The bounds on each curve represent ±1 SEM. (B) Each point represents the mean across all 81 neurons of the firing
rate elicited by a trailing image of a given rank. Trailing images were ranked independently for each neuron from 1 (least effective) to 6 (most effective).
Responses to the trailing image when predicted and unpredicted are represented along the horizontal and vertical axes respectively. The identity line
(dashed), the best-fit line (solid) and its formula (Upper Left) are shown. (C) Timing of population signal strength for the response to the leading (“1st”)
image, the response to the trailing (“2nd”) image when predicted, the response to the trailing (“2nd”) image when unpredicted, and the transitional surprise
signal (response to trailing image when unpredicted minus the response when predicted). Data are based on all 33 neurons exhibiting a statistically significant
transitional surprise signal. Each curve smoothed (by convolution with a Gaussian function with 10-ms SD) and normalized to bring the preresponse baseline
(0–50 ms after image onset) to 0 and peak response to 1. Each time to half height is indicated in parentheses.
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observation, we conclude that little or no additional processing
time was required for generation of a surprise signal.
The strength of the response to the trailing image might de-

pend on the strength of the response to the leading image (31).
To assess this possibility, we classified the leading images in-
dependently for each neuron as best (the single most effective
image), worst (the single least effective image), and intermediate
(the four other images). Then we constructed population plots
representing firing rate as a function of time in trials in which the
leading image was either best or worst and the trailing images
were the four paired during training with leading images in the
intermediate category. Before onset of the trailing image, the
firing rates under the two conditions were markedly different;
however, following trailing-image onset, the difference vanished
(Fig. 3A), with the firing rates becoming statistically indistin-
guishable (paired t test, n = 81, P = 0.97). Thus, the strength of
the response to the trailing image did not depend on the strength
of the response to the leading image.

The strength of the response to the trailing image actually
presented on a given trial might depend on the strength of the
response that the predicted trailing image would have elicited
(32, 33). To assess this possibility, we classified the trailing
images independently for each neuron as best (the single most
effective image), worst (the single least effective image), and
intermediate (the four other images). Then we constructed
population plots representing firing rate as a function of time in
trials in which either the best or worst trailing image was pre-
dicted and in which the trailing image actually presented
belonged to the intermediate category. The responses to the
trailing images under the two conditions (Fig. 3B) were statisti-
cally indistinguishable (paired t test, n = 81, P = 0.80). Thus, the
strength of the response to the presented trailing image did not
depend on the strength of the predicted response.
Repeatedly viewing a pair of images close together in time is

known to lead to pair coding in the ITC, as manifested in
a tendency for neurons to respond with the same strength to both
members of the pair (11, 12, 15–17). It merits tangential note
that we did observe pair coding, although pair coding was not the
main focus of the study. The correlation across neurons between
the strength of the response to a given leading image and the
strength of the response to the trailing image with which it had
been paired during training was positive and significant (n = 81,
r = 0.28, P = 2.8e−10; P < 0.0005 in each monkey). Pair coding
is evident in the fact that the leading image paired during
training with the best trailing image elicited a stronger response
than the leading image paired during training with the worst
trailing image (Fig. 3B, yellow shading).
Neurons in the ITC might be truly sensitive to the transitional

statistics of the training displays (with An unidirectionally pre-
dicting Bn) or, alternatively, to their joint statistics (with An
predicting Bn and vice versa). To distinguish between these pos-
sibilities, we recorded from 17 neurons at 14 sites (five neurons at
five sites in monkey 1 and 12 neurons at nine sites in monkey 2)
while presenting the images both in forward order as during
training (AmBn) and in reverse order (BnAm). At the level of
neuronal population activity, there was a transitional surprise ef-
fect during forward but not reverse presentation (Figs. S3 and S4).
The difference between forward and reverse conditions achieved
significance early in the response period (paired t test on transi-
tional surprise indices for the period 50–250 ms after image onset,
n=17, forwardmean=0.13, reversemean=−0.0044,P=0.035).
At the level of the LFP, the evoked response wasmuch stronger on
unpredicted trials (thick red curve) than on predicted trials (thin
blue curve) under the forward condition (Fig. 4A) but not under
the reverse condition (Fig. 4B). The difference between forward
and reverse conditions was significant (paired t test on transitional
surprise indices, n = 14, forward mean = 0.20, reverse mean =
0.074,P=0.016). Thus, the transitional surprise effect depends on
transitional and not just on joint statistics.

Discussion
ITC neurons adapt to the transitional statistics of repeatedly
viewed sequential displays. This adaptation is manifest, sub-
sequent to the training period, as a transitional surprise effect.
Neurons respond with enhanced gain to images that violate the
transitional rules imposed during training. The idea that local
visual circuits at processing stages as early as the retina might
make predictions and signal their violation is well established
among visual theorists (34–42) but previously has not received
support from neuronal recording studies.
It is an interesting question whether the transitional surprise

effect arises from the suppression of responses to predicted
images or the enhancement of responses to unpredicted images.
A suppressive mechanism would suggest a possible relation to
the phenomenon of repetition suppression, whereby, if an image
is presented twice in succession, the second response is reduced

Fig. 3. The response to an unpredicted trailing image is dependent neither
on the strength of the response to the leading image nor on the strength of
the response that the predicted trailing image would have elicited. (A) Mean
firing rate computed across all 81 neurons in trials in which the leading
image was the one to which the neuron responded most strongly (thick
curve) or least strongly (thin curve). Consideration was restricted to trials
involving the four trailing images associated with neither of the leading
images. Differential activity reflecting selectivity for the best leading image
(yellow shading) persisted only until the onset of the response to the trailing
image. (B) Mean firing rate computed across all 81 neurons in trials in which
the leading image predicted the trailing image to which the neuron
responded most strongly (thick curve) or least strongly (thin curve). Con-
sideration was restricted to trials involving the four other trailing images.
Differential activity reflecting selectivity for the leading image paired during
training with the best trailing image (pair coding) persisted only until the
onset of the response to the trailing image.
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in strength (43). Distinguishing between enhancement and sup-
pression would require comparing responses elicited by pre-
dicted and unpredicted images to responses collected under an
appropriate baseline condition involving no prediction and
counterbalanced for other relevant factors. These factors would
have to include image familiarity, because familiarization reduces
response strength (13, 14), and the timing of the test sequence,
because a leading image exerts forward suppression on the re-
sponse to a trailing image to a degree that depends on the interval
between them (44).
The transitional surprise effect might arise within the ITC or,

alternatively, might be relayed from an earlier area. To resolve
this issue definitively would require recording from areas at
earlier stages of the ventral stream hierarchy. However, we can
provide one piece of evidence suggestive of an origin in the ITC.
Following onset of the trailing image, the surprise effect seems to
develop first at the level of spiking activity and only later at the
level of the LFP (Fig. S5). On the reasonable assumption that
the earliest phase of the LFP response reflects currents gener-
ated at bottom-up synaptic terminals, this observation suggests
that the surprise effect develops in the ITC and is not present in
bottom-up inputs.
To characterize fully the conditions necessary for the de-

velopment of transitional surprise signals is outside the scope of
the present experiment. However, our results do allow placing
upper and lower limits on the amount of visual experience

required. At the upper limit, intensive exposure (more than 800
repetitions of each image sequence over the course of weeks) is
clearly sufficient. At the lower limit, brief exposure (eight repe-
titions of each image sequence within a session) does not suffice.
Otherwise, we would have observed stronger responses to im-
probable than to probable transitions during sessions in which
the image pairs were presented in reverse order.
The most obvious functional interpretation for transitional

surprise signals is that they confer salience on unpredicted
events. Unpredicted events (45–47) including unpredicted tran-
sitions (20) capture attention automatically. They merit pro-
cessing because they tend to mark event boundaries (18, 19) and
because the information they carry can guide learning. It is well
established in studies of animal behavior that sensory events
drive associative learning effectively only to the degree that they
are surprising (48–50). Formal models of learning allow for
gradations of surprise dependent on how markedly an event
deviates from prediction (49). We do not know whether ma-
nipulating the degree of similarity between the presented and the
predicted trailing images would modulate the strength of the
transitional surprise effect.
The idea that the transitional surprise effect is related to the

capture of attention by unpredicted events raises a chicken-and-
egg problem. Attention to an image enhances the gain of neu-
ronal responses to it (51, 52). Is the transitional surprise effect
a cause, or is it only a consequence of the capture of attention?We
favor regarding it as a cause, not a consequence, for two reasons.
First, the display consisted of a single foveal image. Attentional
enhancement of visual response strength in extrastriate cortex
depends on the simultaneous presence of competing images
elsewhere in the visual field (31, 53, 54). The strength of the re-
sponse to an isolated foveal image is not affected by whether the
monkey is processing it actively or merely is maintaining passive
fixation (5, 55). Nor is the strength of the response enhanced by
making the image surprising through the violation of expectations
other than those based on learned image–image transitional rules
(56, 57). Second, the transitional surprise effect was present from
the outset of the visual response. If the effect depended on top-
downattentional influences fromareas beyond the ITC, onewould
expect it to develop after a delay.
The reward-prediction error signal posited in classic learning

theory (32) and observed in dopamine neurons of the ventral
tegmental area (33) is proportional to the value of the delivered
reward minus the value of the predicted reward. By direct
analogy, ITC neurons might carry a visual prediction error signal
proportional to the response associated with the presented im-
age minus the response associated with the predicted image. In
this case, the response to an intermediate trailing image should
have been low following prediction of the best trailing image and
high following prediction of the worst trailing image. No such
effect occurred (Fig. 3B). We conclude that the transitional
surprise effect in the ITC, although it may contribute to learning
by highlighting surprising events, is not a reward-prediction error
signal in the classic sense.
The transitional surprise effect conceivably could result from

principles of operation that allow the brain to settle to an efficient
representation of the most likely current state of the environment
as based on visual input. In models involving hierarchical pre-
dictive coding (34–42), visual activation feeds forward through
a chain of areas leading from V1 to the ITC and beyond, with
neuronal activity at successively later stages representing hy-
potheses about successively more global attributes of the visual
stimulus. If a hypothesis represented by activity in a high-order
area predicts a hypothesis represented by activity in a low-order
area, rendering the latter redundant, then feedback from the
high-order area induces a reduction of activity in the low-order
area. This reduction may take the form of suppressing or
“explaining away” the activity of neurons representing the more

Fig. 4. The transitional surprise effect is evident at the level of the LFP. (A)
LFP activity elicited by presenting images in the trained order. The N200-to-
P300 peak-to-peak amplitude of the response to the trailing image was
greater when the order was unpredicted (AmBn, m ≠ n, thick red curve) than
when it was predicted (AmBn, m = n, thin blue curve). (B) LFP activity elicited
by presenting images in reverse order (BnAm). An unpredicted (m ≠ n) and
a predicted (m = n) transition elicited nearly identical responses. Each panel
is based on the 14 sites at which testing was carried out with images pre-
sented in both orders. The tick marks near the top of each panel indicate
those points in time at which a paired t test (n = 14, α = 0.05), applied suc-
cessively to each 1-ms bin in the range from 0–1,000 ms, revealed a signifi-
cant difference between voltages measured under the two conditions.

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1112895108 Meyer and Olson

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1112895108/-/DCSupplemental/pnas.201112895SI.pdf?targetid=nameddest=SF5
www.pnas.org/cgi/doi/10.1073/pnas.1112895108


local hypothesis (36, 37) or of silencing neurons that otherwise
would signal a signed (38–42) or an unsigned (34) prediction
error. This form of processing, although commonly considered in
relation to the prediction of local attributes by simultaneously
present global attributes, also can accommodate the prediction of
subsequent events by antecedent ones (39). An area hierarchi-
cally superior to the ITC might respond to the leading image by
generating feedback signals that reduce the visual response gain
of ITC neurons representing the predicted trailing image, so that,
upon its appearance 500 ms later, it elicits only a weak response.
We conclude by noting that the present observations are un-

precedented. One prior study demonstrated an effect of transi-
tional probability on neuronal auditory responses in the zebra
finch but did not address whether the effect was a product of
experience (58). Two studies other than ours have assessed the
impact of transitional probability on neuronal activity in the ITC.
Neither of these revealed evidence for surprise signals. Kaliu-
khovich and Vogels (57) found that when the same image was
presented twice in succession, the response to the second pre-
sentation was the same regardless of whether the repetition was
expected or unexpected. Anderson and Sheinberg (56) found
that when a cue predicted onset of a second image after a certain
interval, firing was attenuated (not enhanced) if the second im-
age appeared at an unpredicted time. In these studies, like ours,
predictions were violated. Why, then, did the ITC neurons not
carry surprise signals? We propose that enhanced firing is not
a general response to surprise but rather a specific response to
image–image transitions assigned low probability on the basis of
the transitional statistics of prior experience. This result is exactly
what one would expect if transitional surprise signals in the ITC
were representative of neural processes underlying the incidental
and implicit learning of perceptual transitional statistics as
demonstrated in human studies (18, 19).

Methods
Training Runs. Each monkey received extensive initial exposure to six se-
quential pairs of images: A1–B1 through A6–B6 (Fig. 1A). Each trial consisted
of the following successive events: fixation on a central spot (300 ms), image
A at screen center (503 ms), image-free gap (18 ms), image B at screen center
(507 ms), fixation on a central spot (300 ms), and delivery of reward.
(Durations were measured with a photosensitive diode.) During a single run,
over the course of 48 trials, each pair was presented eight times. The se-
quencing of conditions within a run was random subject to the constraint
that each pair had to be presented once in each block of six successfully
completed trials. The stimuli were digitized images of natural and man-
made objects extracted from their original scenes to render them maximally
distinctive. On a liquid crystal display monitor at a viewing distance of 32 cm,
the horizontal or vertical axis of each image, whichever was longer, sub-
tended 4° of visual angle (80 pixels along the vertical axis or 88 pixels along
the horizontal axis). Monkey 1 completed training sessions on 42 d spanning
three months. Monkey 2 completed training sessions on 13 d spanning 1 mo.
The number of runs per day was 3.6 on average, with a minimum of one and
a maximum of 13. Each monkey completed 102 runs over the course of the
training period and thus saw each sequential image pair 816 times.

Test Runs. During neuronal data collection, the timing of events in each trial
was the same as during training. The A image could be any of the six images
presented in the leading position during training (A1–A6). The B image could
be any of the six images presented in the trailing position during training
(B1–B6). Each of six “trained” sequences (AmBn, m = n) was presented eight
times. Each of 30 “untrained” sequences (AmBn, m ≠ n) was presented once.
Thus, a full run consisted of 78 trials. The sequence of trials was random.

Reverse Runs. In a subset of neurons characterized using the standard pro-
cedure, we also monitored responses to reverse displays. The same conditions
were imposed as in the standard procedure, but the order of the images
in each trial was reversed. For each condition AmBn in a forward run, there
was a corresponding condition BnAm in a reverse run. The training, test, and
reverse runs were the only contexts in which the monkeys saw the
training images.

Recording Sites. Two adult rhesus macaque monkeys participated in the
experiments (monkey 1, male, laboratory designation Tu, and monkey 2,
female, laboratory designation Ec). All experimental procedures were ap-
proved by the Carnegie Mellon University Institutional Animal Care and Use
Committee andwere in compliancewith the guidelines set forth in theUnited
States Public Health Service Guide for the Care and Use of Laboratory Ani-
mals. In each monkey, a surgically implanted cranial implant held a post for
head restraint and a vertically oriented chamber throughwhich the electrode
could be introduced via a guide tube into the ITC along tracks forming
a square grid with 1-mm spacing. Recording was carried out in the left
hemisphere of monkey 1 and the right hemisphere of monkey 2. The location
of recording sites relative to gross morphological landmarks was determined
by extrapolation fromMRI-visible fiducial markers placed at known locations
within the chamber. The recording sites occupied the ventral bank of the
superior temporal sulcus and the inferior temporal gyrus lateral to the rhinal
sulcus at levels A16–19 mm relative to the interaural plane in monkey 1 and
A13–16 mm in monkey 2.

Database. We monitored neuronal responses at 71 recording sites (42 in
monkey 1 and 29 in monkey 2). Low-pass filtered traces from these sites
formed the LFP database (see SI Results for further details). Eighty-one
visually responsive neurons encountered at these sites (46 in monkey 1
and 35 in monkey 2) formed the neuronal database. Results from the two
monkeys were closely similar (Fig. S6).

Statistical Assessment of Transitional Surprise Signals. For each neuron, we
carried out an ANOVA with prediction status of the trailing image (predicted
or unpredicted) and image identity (six levels) as factors and with firing rate
50–500 ms after stimulus onset as the dependent variable. The analysis was
based on all five trials in which each trailing image was unpredicted and on
a randomly selected subset of five trials out of the eight on which it was
predicted. This selection ensured an identical number of observations for
each combination of prediction status and image identity. A significant main
effect of prediction status, with firing greater under the unpredicted than
under the predicted condition, constituted evidence for a transitional sur-
prise effect.

Response Timing. To measure the latency of the responses to the leading and
trailing images and of the transitional surprise signal, we adopted an ap-
proach based on measuring time to half height. It might seem more rea-
sonable to measure the time at which the signal becomes statistically
significantly different from baseline. However, this approach confounds
response strength with response timing because, with two rising responses
identical except for strength, the stronger will cross statistical threshold first.
For each neuron, we created four poststimulus time histograms representing
the response to the leading stimulus (L); the response to the trailing stimulus
in trials in which it was unpredicted (Tu); the response to the trailing stimulus
in trials in which it was predicted (Tp); and the surprise signal (S = Tu − Tp).
Each histogram was binned at 1 ms and smoothed by convolution with
a Gaussian function (σ = 10 ms). We took baseline (B) as the average value in
the range 0–50 ms after image onset. We took peak (P) as the maximal value
in the range 60–500 ms after image onset. From these parameters, we
computed the time at which the spike density function achieved half height:
(B + P)/2. The time to half height for each signal was taken as the time at
which the population average achieved half height. To determine whether
the timing of two signals was statistically different, we applied a Wilcoxon
test to the two distributions obtained by measuring time to half height in
individual neurons or LFP sites.

Quantification of LFP Responses. The most sharply defined peaks in the re-
sponse evoked by the trailing stimulus were a negative peak at roughly 200
ms and a positive peak at roughly 300 ms, which we refer to as the N200 and
P300 peaks. We took as a measure of response strength the amplitude of the
excursion from the N200 trough to the P300 peak. Despite some variations
in waveform from site to site, a simple procedure for obtaining this measure
yielded consistent results. We took the minimal voltage in a window 150–250
ms after stimulus onset as the value of the N200 trough and the maximal
voltage in a window 250–350 ms after stimulus onset as the value of
the P300 peak. We then took the difference between the maximum and
minimum as the amplitude of the response. The peak-to-peak amplitude
measured in these experiments was lower than in most other published
studies (59, 60). This discrepancy is irrelevant to all statistical comparisons
because they concern the relative rather than the absolute amplitude of
the response.
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Transitional Surprise Index. We characterized the prediction error effect with
a scalar measure to compare its strength when images appeared in the order
in which they were presented during training (AmBn) with its strength when
they were presented in the reverse order (BnAm). The measure had to take
account of the fact that the responses to the A images might differ in overall
strength from the responses to the B images, either because of the arbitrary
selection of images and arbitrary sampling of neurons or as a consequence
of training. To factor out any such difference, we used an index normalized
to response strength: (x − y)/ (x + y) where x was the firing rate (or LFP
amplitude) when the trailing image followed another image’s training

partner and y was the firing rate (or LFP amplitude) when the trailing image
followed its own training partner.
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