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The dorsolateral prefrontal and posterior parietal cortex are 2 com-
ponents of the cortical network controlling attention, working
memory, and executive function. Little is known about how the ana-
tomical organization of the 2 areas accounts for their functional
specialization. In order to address this question, we examined the
strength of intrinsic functional connectivity between neurons
sampled in each area by means of cross-correlation analyses of
simultaneous recordings from monkeys trained to perform working
memory tasks. In both areas, effective connectivity declined as a
function of distance between neurons. However, the strength of ef-
fective connectivity was higher overall and more localized over
short distances in the posterior parietal than the prefrontal cortex.
The difference in connectivity strength between the 2 areas could
not be explained by differences in firing rate or selectivity for the
stimuli and task events, it was present when the fixation period
alone was analyzed, and according to simulation results, was con-
sistent with a systematic difference either in the strength or in the
relative numbers of shared inputs between neurons. Our results
indicate that the 2 areas are characterized by unique intrinsic func-
tional organization, consistent with known differences in their
response patterns during working memory.

Keywords: cross-correlation, macaque, monkey, neurophysiology, working
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Introduction

The dorsolateral prefrontal (dlPFC) and posterior parietal
cortex (PPC) are 2 nodes of a broader brain network involved
in attention, working memory, and executive function (Con-
stantinidis and Procyk 2004; Bisley and Goldberg 2010). It is
generally accepted that PFC is a hierarchically superior area in
terms of processing of visual information (Felleman and Van
Essen 1991; Serre et al. 2007), though neural correlates of
working memory and attention have been described both in
the PFC (Fuster and Alexander 1971; Funahashi et al. 1989;
Miller et al. 1996; Rainer et al. 1998; Everling et al. 2002) and
PPC (Constantinidis and Steinmetz 1996; Chafee and
Goldman-Rakic 1998; Gottlieb et al. 1998; Bisley and Gold-
berg 2003; Constantinidis 2006). Differences in the patterns of
neuronal activity in the dlPFC and PPC, revealing neurophy-
siological correlates of their functional specialization, have
been demonstrated in the context of behavioral paradigms
that require maintaining a stimulus in working memory and
filtering distracting stimuli (Katsuki and Constantinidis 2012b;
Suzuki and Gottlieb 2013). Neurons in PPC generally rep-
resent the location of the most recent stimulus even if it is be-
haviorally irrelevant (Constantinidis and Steinmetz 1996;
Powell and Goldberg 2000); on the other hand, PFC neurons
are better able to represent the behaviorally relevant stimulus
(di Pellegrino and Wise 1993; Qi et al. 2010; Suzuki and

Gottlieb 2013). More recently, functional differences have also
been demonstrated in the context of categorization tasks
(Merchant et al. 2011; Goodwin et al. 2012; Swaminathan and
Freedman 2012).

How is the specialization of these 2 areas of the association
cortex achieved? In the sensory pathways, the cortical hierar-
chy is characterized by stereotypical feed-forward connections
transmitting the output of one area into the input layers of the
next (Hubel and Wiesel 1962, 1965; Douglas and Martin
2004, 2007). A long-standing theory posits that the elemental
transformation of information in each cortical area is essen-
tially the same, leading to progressively larger receptive fields
and more complex neuronal properties by virtue of increasing
numbers of processing steps, an idea ingrained in current
models of cortical function (Edelman and Mountcastle 1978;
Cadieu et al. 2007; Serre et al. 2007). However, no obvious
hierarchical pattern of information processing is present
between the PPC and PFC, as their connections are largely re-
ciprocal rather than strictly serial (Barbas and Pandya 1989;
Cavada and Goldman-Rakic 1989; Felleman and Van Essen
1991). Therefore, it is unclear how functional specialization
can be achieved beyond the PPC into the frontal lobes.

One possible explanation of the functional specialization of
the PFC is that its intrinsic connectivity is unique relative to
that of its afferent inputs. By some accounts, prefrontal pyra-
midal neurons exhibit the most extensive dendritic trees and
highest numbers of spines of any cortical neurons (Elston
2000, 2003). Therefore, it is possible that specialized intrinsic
connectivity patterns in prefrontal cortex determine, at least
in part, its unique functional properties. However, physiologi-
cal substrates of this idea have not been revealed until now. If
the prefrontal circuitry is indeed characterized by a unique
organization of its effective synaptic inputs, then the strengths
of functional connections inferred from dual recordings
should depend differently on distance across the 2 areas.
Here, we test this idea.

Methods
Three male, rhesus monkeys (Macaca mulatta) weighing 5–12 kg
were used in this study. All surgical and animal-use procedures in this
study were reviewed and approved by the Wake Forest University
Institutional Animal Care and Use Committee following the National
Institutes of Health guidelines.

Surgery and Neurophysiology
Two 20-mm diameter recording cylinders were implanted over the
dlPFC and PPC in each animal (Fig. 1A). We performed neuronal re-
cordings using arrays of 2–8 microelectrodes in each cylinder with
either glass-coated, tungsten electrodes of 250 μm diameter with an
impedance of 1 MΩ measured at 1 kHz (Alpha-Omega Engineering,
Nazareth, Israel) or epoxylite-coated tungsten electrodes with a
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diameter of 125 μm and an impedance of 4 MΩ at 1 KHz (FHC,
Bowdoin, ME, USA). A microdrive system (EPS drive, Alpha-Omega
Engineering, Nazareth, Israel) was used to position electrodes and
advance them into the cortex. The electrical signal was amplified,
band-pass filtered between 500 Hz and 8 kHz, and recorded through
a modular data acquisition system at 25-μs resolution (APM system,
FHC, Bowdoin, ME, USA). Anatomical localization of electrode pen-
etrations was determined based on MR imaging of the brain obtained
after implantation of the recording cylinders. Data were collected
from areas 46 and 8a in the dlPFC and area 7a in the PPC. All record-
ings analyzed here were collected from the exposed surface of the
cortex, eliminating recordings from sulci. Recording sites analyzed in
the PPC sampled the crown of the gyrus posterior to the intraparietal
sulcus; sites in the dlPFC were collected at least 1 mm away from the
principal sulcus, in the superior convexity of the PFC, and in the
surface cortex between the principal and arcuate cortex (Fig. 1A). In
addition to anatomical localization, we used 3 more selection criteria
to ensure that our analysis focused on horizontal connections across
the surface of the cortex: 1) both neurons of a pair must have been
recorded at a depth of <2.5 mm from the surface of the cortex; 2) the
2 electrode penetrations of a pair must have met the surface of the

cortex no >1 mm apart from each other (i.e., if one electrode traversed
>1 mm than the second before entering the cortex, the pair was dis-
carded); 3) pairs of neurons that were recorded at depths >1 mm rela-
tive to each other were discarded, even if they otherwise avoided a
sulcus.

Behavioral Tasks
The monkeys sat 60 or 68 cm away from a monitor in a dark room
with their head fixed, as described in detail previously (Qi et al. 2010;
Meyer et al. 2011). An infrared eye position-tracking system (model
RK-716; ISCAN, Burlington, MA, USA) sampled and recorded eye pos-
ition at 240 Hz. Monkeys were required to maintain their gaze on the
fixation target throughout a trial; breaks in fixation aborted the trial.
The visual stimulus presentations were controlled by in-house soft-
ware (Meyer and Constantinidis 2005), developed in the MATLAB
computational environment (Mathworks, Natick, MA, USA). Two
monkeys were trained with a Delayed Match-to-Sample task (Fig. 1B),
and 1 monkey was trained with a Match–Nonmatch task (Fig. 1C). In
the Delayed Match-to-Sample task (Fig. 1B), monkeys were trained to
remember the location of a cue and to release a lever when a sub-
sequent stimulus appeared at the location of the cue. The cue stimu-
lus consisted of a 1.5° square in green or red color and was displayed
at 1 of 9 locations on a 3 × 3 grid with 15° separation between
locations. In half the trials an array of multiple stimuli was presented,
one of which differed in color and constituted the cue. After the
monkeys pulled the lever and kept their eye fixated for 0.5 s, a cue
was presented for 0.5 s followed by a delay period of 1.0 s and a
pseudorandom sequence of 0–2 nonmatch stimulus presentations,
each lasting 0.5 s and separated by delay periods of 0.5 s. When a
stimulus appeared at the same location as the cue, the animals were
required to release the lever within 0.5 s after the match stimulus dis-
appeared in order to receive a reward. The trial was immediately
aborted if the monkeys released the lever at any other time during the
trial. Variations of the task with only 4 instead of 9 spatial locations
used in a block of trials and a reaction-time version of the task in
which the monkey was required to release the lever as quickly as
possible when a target was present in the display were used in some
sessions (Katsuki and Constantinidis 2012a). In the Match–Nonmatch
task (Fig. 1C), a 2° white stimulus appeared in 1 of 9 locations ar-
ranged on a 3 × 3 grid of 10° separation between adjacent stimuli. A
trial started with a 1-s fixation interval followed by a first stimulus
presentation lasting for 0.5 s. After the first stimulus presentation,
there was a 1.5-s delay period, and then a second stimulus appeared
at the location identical or diametrically opposite to the first stimulus,
also for 0.5 s. After another delay period (1.5 s), choice targets were
presented, and the monkey was required to make a saccade to a
green target if the two stimuli matched, and to a blue target if they
did not.

Neuron Selection
Recorded spike waveforms were sorted into separate units using an
automated cluster analysis method based on the KlustaKwik algor-
ithm (Harris et al. 2000); this relied on principal component analysis
of the waveforms and was implemented in MATLAB. Neurons with
significant elevation of firing rate during the presentation of visual
stimuli were identified by comparing the firing rate in the 0.5-s inter-
val of a stimulus presentation with the 1- or 0.5-s interval of fixation
(paired t-test; P < 0.05). Neurons with a significant change in activity
in other task epochs were evaluated in a similar way. Only trials from
correct behavioral responses to the task were used in the analysis pre-
sented in this article.

Cross-Correlation Analysis
To estimate the strength of intrinsic neural connections of each brain
area, cross-correlation analysis was performed on pairs of neurons re-
corded simultaneously from separate electrodes spaced 0.18–1.5 mm
apart from each other. Only neuron pairs containing >1000 spikes in
total, and at least 100 spikes in each neuron were used for this analy-
sis. Cross-correlation histograms (CCHs) were constructed from the

Figure 1. Brain areas and tasks. (A) Schematic diagram of the monkey brain. The
areas of recordings are highlighted. AS, arcuate sulcus; IPS, intraparietal sulcus; PS,
principal sulcus; STS, superior temporal sulcus. (B) Successive frames illustrate the
sequence of stimulus presentations in the Delayed Match-to-Sample task. Following
the cue presentation, a match or nonmatch stimulus appeared. The monkeys were
required to remember the location of cue stimulus and release a lever when a
subsequent stimulus appeared at the cued location. (C) Schematic illustration of the
Match/Nonmatch task. Two choice targets were presented at the end of a trial, and
the monkey was required to saccade to a green target (colored in gray in the figure);
in case the 2 stimuli were matching and to a blue target (colored in black)
otherwise.
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spike trains of each pair of neurons (Perkel et al. 1967), using all
available spikes from all recorded trials and conditions, as well as for
separate periods, such as the fixation period. Since previous studies
have identified CCH peaks of varying widths (Nowak et al. 1995), we
relied on time scales of ±50 and ±200 ms with bins of 1 and 4 ms,
respectively. CCH peaks almost always were centered at time zero, a
finding indicating that the 2 neurons we recorded from shared
common inputs (Moore et al. 1970; Smith and Kohn 2008). We there-
fore identified peaks at the central 5 and 20 ms of the ±50 and ±200
ms CCHs, respectively.

Strength was computed as the area under the peak, subtracting the
expected value of the CCH under the assumption that the 2 spike
trains are independent, and expressed as a percentage of the total
number of spike counts. For cortical areas such as the dlPFC and PPC,
where the influence of a stimulus on the millisecond timing of spikes
during the duration of a trial lasting several seconds is minimal, a
simple estimation of the expected value of the CCH can be obtained
from the baseline of the CCH, defined as the average of half the bins
in the flanks of the CCH (Constantinidis et al. 2001). In order to more
robustly account for potential effects of stimulus presentations or
other factors covarying during the time course of a trial that could
simultaneously increase firing rates in both neurons of a pair, we also
corrected CCHs with 3 alternative methods. First, we calculated a shift
predictor by shifting the order of trials (Dickson and Gerstein 1974).
This shift was performed within the set of trials recorded using the
same stimulus location, so that trials of the 2 neurons involving the
same location were always paired with each other. Cross-correlation
strength for each pair of neurons was then obtained by subtracting
this shift predictor on a bin-by-bin basis from the raw CCH and divid-
ing the value under the center 5 ms by the total number of spike
counts. Second, we implemented a method that relies on constructing
surrogate spike trains (Smith and Kohn 2008). Each trial was segmen-
ted in 50 ms bins, and these bins were then shuffled between trials to
produce spike trains with an equal number of trials as the raw data,
but with temporal structures beyond 50 ms destroyed within each
trial. Shuffling was repeated 100 times for each trial. Third, we
created surrogate spike trains by varying randomly the time of each
spike in a trial by sampling a replacement spike time from a uniform
distribution spanning 50 ms around the time of the original spike.
This method also destroyed temporal structures beyond 50 ms,
without the need to shuffle the order of trials. All methods yielded
very similar results; we relied on the last predictor method for most
analyses, unless stated otherwise.

Individual pairs of neurons with significant CCH peaks were ident-
ified in the following manner. The value of the center 4 ms bin of the
±200 ms CCH was computed in the raw data, and in predictors ran-
domly constructed 100 times. The empirical mean and standard devi-
ation of the predictor was determined. Pairs of neurons with a raw
CCH peak exceeding the predictor by a number of standard devi-
ations corresponding to the α = 0.001 level were deemed to be signifi-
cant, similar to prior studies reporting significant peaks among dlPFC
neurons (Constantinidis et al. 2001).

To test the influence of firing rate on cross-correlation strength, we
calculated the geometric mean of discharge rates for each neuron
pair. This was defined as the square root of the product of mean dis-
charge rates of each neuron, across all conditions used to construct
the CCH. Cross-correlation strengths were then analyzed as a function
of the geometric mean rates.

Noise Correlation
Noise correlation (also known as spike-count correlation) represents
the correlation of normalized firing rates between a pair of neurons
around their mean firing rate for a stimulus or task condition (Zohary
et al. 1994). We restricted our analysis of noise correlation to the fix-
ation period alone to avoid the confound of covariations in firing rate
that occurs when 2 neurons are activated in the same time intervals
(Brody 1998). All noise-correlation analyses relied on the same pairs
of neurons used in cross-correlation analysis. For each pair of
neurons, we computed the firing rate during the fixation interval in
each trial. We then computed the Pearson correlation coefficient

between these normalized firing rate values. Noise correlation can be
thought of as the integral of the CCH peaks across all time lags (Bair
et al. 2001).

Signal Correlation
Signal correlation represents an estimate of the similarity between the
tuning of 2 neurons; high positive signal correlation values represent
neurons with similar preferences for stimulus locations. The mean
firing rates obtained during the cue period for each location were
used for this analysis. The signal correlation was then computed as
the Pearson correlation coefficient between the mean firing rates of
2 neurons, as we have done previously (Constantinidis et al. 2001).
Only stimulus presentations involving a single stimulus shown at 1 of
the 9 cue locations were used. In some sessions, neurons were tested
with 4 instead of 9 stimulus locations; these were excluded from the
signal correlation analysis. The relationship between the signal corre-
lation and cross-correlation strength from the same pair of neurons
was examined in each case.

Temporal Correlation
Temporal correlation represents an estimate of the similarity between
the firing rates of 2 neurons over the time course of a behavioral trial
(Constantinidis et al. 2001). To determine the temporal correlation for
a pair of neurons, all trials from each neuron were first averaged to-
gether regardless of stimulus location or feature, and the mean firing
rate was computed for successive 0.5 s windows spanning the trial.
For the Delayed Match-to-Sample task, the windows included the fix-
ation period, cue period, delay period, and match or nonmatch stimu-
lus period. For the Match–Nonmatch task, the 0.5 s windows spanned
the fixation period, cue period, delay period, match/non-match
period, and second delay period. The Pearson correlation coefficient
was calculated between the responses of 2 neurons across corre-
sponding time windows. We also examined the relationship between
the signal correlation and cross-correlation strength from the same
pair of neurons.

Distance Function
As cross-correlation strength and noise correlation values were ex-
pected to depend on distance between electrodes in each cortical area
(Lee et al. 1998; Constantinidis and Goldman-Rakic 2002), we fitted
exponential functions to strength values across electrode separations.
Fitting functions took the form:

s ¼ Ae
�
d
l

where s is the cross-correlation strength, d is the horizontal separation
between the 2 electrodes, A, and λ are free parameters of the expo-
nential model, the amplitude and spatial constant, respectively. To
avoid the fit being dominated by outliers at short (0.2–0.3 mm) dis-
tances, we relied on a robust fitting technique that performs the
least-squares minimization iteratively, giving less weight to the data at
the tails of the distribution of residual values. This was implemented
with the MATLAB “nlinfit” function, using the “robust” option and
“fair” weighting function. We compared the exponential functions ob-
tained from different areas using a resampling method (Davison and
Hinkley 1997). A permutation test was performed in which the area
where a pair of neurons was recorded from was randomly assigned
and then the best parameters that fit the exponential were deter-
mined. Repetition of the procedure over 10,000 times generated a
null distribution of values to which the empirical value could be
compared.

Simulations
We simulated the activities of pairs of model neurons in a computer
to explore various scenarios that could explain the experimental
results. In the standard set of simulations, we varied both the frac-
tion of common input, f, and the mean synaptic weight per shared
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connection, w. Each member of a pair was an integrate-and-fire
neuron (Troyer and Miller 1997; Salinas and Sejnowski 2000; Salinas
and Sejnowski 2004) driven by 1000 excitatory and 250 inhibitory
inputs, each of which produced spikes with Poisson statistics. Excit-
atory and inhibitory inputs fired at 10 and 20 spikes/s, respectively.
Whenever excitatory (inhibitory) input i produced a spike, the total
excitatory (inhibitory) conductance gE (gI) increased by gi, which is
the weight of synapse i. Conductances gE and gI decayed exponen-
tially with time constants of 10 and 8 ms, respectively; with these
values, the widths of the resulting CCH peaks were on the order of
10–20 ms. In this model, the fluctuations in conductance drive the
cell’s voltage, V, which evolves according to

t
dV
dt

¼ �V � gEðV � VEÞ � gIðV � VIÞ

where the resting potential is set to 0 mV. Whenever V exceeds a
threshold (20 mV), a spike is emitted, and V is clamped to a reset
value (10 mV) for a refractory period (1.8 ms). After that, V continues
evolving according to the above equation. Other parameters were
τ = 20 ms, VE = 74 mV, VI =−10 mV.

For pairs of neurons with a fraction of shared inputs f, 1000 · f
(250 · f) of the excitatory (inhibitory) input spike trains were the
same. Synaptic weights varied across inputs, but were statistically the
same for all neurons; that is, each of the 1000 excitatory weights was
drawn independently from a uniform distribution between 0.001 and
0.04, and each inhibitory weight was drawn from a uniform distri-
bution between 0.0044 and 0.176; these values were set so that the
firing rates were ∼20 spikes/s and the coefficients of variation (CV,
equal to the standard deviation of the interspike intervals divided by
their mean) were around 1.1 for all model postsynaptic neurons. The
average synaptic weight per shared input, w, is expressed relative to
the average weight across all synapses. That is, w = 1 means that an
excitatory (inhibitory) common input has, on average, the same
weight as any excitatory (inhibitory) nonshared input. For any given
value of w, the synaptic weights of all nonshared inputs were appro-
priately rescaled so that the total (shared plus nonshared) excitatory
and inhibitory synaptic weights of each neuron were always the same.

Simulated output spike trains were used to generate CCHs, and the
central 5 ms of each histogram were used to compute cross-
correlation strength, as was done with the recorded data. Results are
averages over multiple neuron pairs that had different synaptic weight
realizations but identical f and w values.

In additional runs, some model parameters were varied to estimate
their impact on the results: the numbers of input neurons, the firing
rates of the input neurons, the synaptic time constants, and the con-
duction delays between the input spike trains and the postsynaptic
neurons. Whenever necessary, the synaptic weights were multiplied
by a factor, one for excitatory and another for inhibitory inputs, so
that the postsynaptic model neurons always fired at about 20 spikes/s
and had a CV of 1.1 approximately.

Results

We analyzed the effective connectivity between pairs of
neurons recorded simultaneously in the dorsolateral prefron-
tal and in the posterior parietal cortex (Fig. 1A) of 3 monkeys
trained to perform visual working memory tasks (Fig. 1B,C).
The hypothesis that we sought to test is that intrinsic, effective
connectivity differs systematically in the 2 areas. Recordings
selected for analysis were obtained from the crown of cortical
gyri, allowing us to focus on horizontal connections between
neurons; electrode penetrations that descended into the prin-
cipal, arcuate, or intraparietal sulcus were omitted, and thus
analysis excluded neurons recorded in the frontal eye field or
lateral intraparietal area (see Materials and Methods section).
The sample encompassed 1935 pairs of neurons from areas
46 and 8a of the dlPFC and 1078 pairs of neurons recorded

from area 7a of the PPC. Pairs of neurons with activity in any
task period that met a minimum spike number criterion
(>1000 spikes in total) were used for most analyses. These in-
cluded 1123 neurons from the dlPFC (52, 778, and 293 from
the 3 monkeys, respectively) and 632 from the PPC (123, 382,
and 293, respectively). All pairs analyzed were recorded from
different microelectrodes, separated laterally by 0.18–1.50 mm
and advanced to depths no different than 1 mm of each other
into the cortical volume (mean and standard deviation of
depth difference between electrodes: 0.19 ± 0.25 mm in the
dlPFC, 0.23 ± 0.20 mm in the PPC). Although depth estimates
are approximate, most neurons in our database were recorded
at supragranular layers (85%; of neurons were recorded at
depths <1 mm from the surface of the cortex). No significant
difference in behavioral performance was observed between
the sessions during which the parietal and the prefrontal
recordings were obtained. The average performance of
3 monkeys was 87% during the prefrontal recordings, and
86% in the posterior parietal recordings; no significant differ-
ence in performance was observed for any of the 3 monkeys
analyzed separately (t-test, P > 0.1 in each case).

Effective Connectivity as a Function of Distance
To uncover potential differences in the intrinsic circuitry of
the 2 areas, we measured how strong the functional connec-
tions between pairs of neurons in each area are, and did this
for pairs separated by a range of distances. The strength of
the effective connectivity between 2 simultaneously recorded
neurons was estimated based on their CCH, which shows the
percentage of spikes from the 2 neurons appearing within a
few ms of each other, in excess of the expected number as-
suming that the 2 neurons discharged independently, illus-
trated as the white bars in Figure 2B (Perkel et al. 1967;
Levick et al. 1972; Aertsen et al. 1989; Reid and Alonso 1995;
Constantinidis et al. 2001). Almost invariably, when a cross-
correlation peak was present, it was centered at time zero. We
therefore calculated the cross-correlation strength on the
center 5 and 20 ms window of the CCH. The 5 ms strength in
particular represents synchronized discharges in the time
scale of monosynaptic interactions (±2.5 ms).

Cross-correlation strength in the 5 ms scale was highly
variable across neuronal pairs, but on average declined sys-
tematically as a function of horizontal distance between the
2 neurons (Fig. 3A–C) in agreement with prior studies in
various cortical areas (Lee et al. 1998; Constantinidis and
Goldman-Rakic 2002; Smith and Kohn 2008). Importantly, we
found that cross-correlation strength was higher in the PPC
than the dlPFC, particularly for short (≤0.3 mm) electrode
separations. When we compared mean cross-correlation
strength across neuronal pairs that met the minimum spike
criteria (N = 1755) grouped by the 2 areas and using distance
as a covariate, we found a significant difference between
the strength in the 2 areas (ANCOVA, P < 0.05). Modeling the
effect of distance as an exponential also yielded a significant
difference between the intercepts of the dlPFC and PPC expo-
nential functions. We relied on a robust fitting technique (see
Materials and Methods section) to fit an exponential across all
neuron pairs of each area, without overweighting outliers (re-
sulting in a curve slightly underestimating the empirical
values recorded at distances of 0.2–0.3 mm). A simple expo-
nential fit described well the cross-correlation strength at each
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distance averaged across monkeys (R2 = 0.90 and 0.65 for the
PPC and dlPFC for the binned data shown in Fig. 3D). We
then conducted a permutation test, first assigning each pair
randomly to 1 of the 2 areas and then fitting an exponential
function to the resulting groups of neurons with the same
robust technique, to create an empirical distribution of inter-
cepts and space constants for our dataset. The actual differ-
ence in intercepts between PPC and PFC we observed
corresponded to a probability of P < 0.05. The difference in
intercepts between 2 areas was further amplified (P < 0.005) if
we relied on an unweighted least-squares minimization tech-
nique. When the average cross-correlation strengths were
computed using only neuron pairs with ≤0.3 mm electrode
separations (Fig. 3D inset), the strength was significantly
higher for the PPC than the dlPFC in each of the 3 monkeys
based on a t-test (P < 0.05). A more conservative, nonpara-
metric comparison, the Wilcoxon rank-sum test, was still
highly significant for 2 of the 3 monkeys (P < 0.005, P = 0.13,
and P < 10−5, respectively). The choice of 0.3 mm as the
cutoff for this comparison was somewhat arbitrary, dictated
mostly by the number of pairs available in our database at dis-
tances around this value. The difference between areas re-
mained significant (P < 0.05, based on the Wilcoxon rank-sum

test) for 1 of the 2 monkeys for which neuron pairs were
available at distances of 0.47–0.65 mm.

The results of this analysis were based on all available
spikes. To ensure that this difference was not somehow tied
to differential effects of the tasks in the 2 areas, we con-
structed CCH’s based on spikes recorded only from the fix-
ation period, prior to the appearance of any stimulus in each
trial. Higher cross-correlation strength was observed for PPC
than dlPFC neuron pairs within 0.3 mm of each other for the
fixation period alone (PPC mean and standard error
2.23 ± 0.12%, PFC 1.19 ± 0.06%), which was a highly signifi-
cant difference (t-test, P < 10−10).

We also sought to correct for the influence of the stimulus
presentation or other factors covarying during the time course
of a trial that could simultaneously increase firing rate in a
pair of neurons, resulting in inflated CCH values. To ensure
that the difference in cross-correlation strength across areas
that we observed was not the result of such factors influen-
cing unequally the 2 areas, we relied on several predictor
methods (Fig. 4A–C). We first constructed “shift predictors” or
CCHs resulting from shifting the order of trials of the
2 neurons, but always pairing trials drawn from the same
stimulus presentation (Fig. 4A). We also computed predictors

Figure 2. Cross-correlation analysis. (A) Sample rasters and histograms of 2 parietal neurons recorded simultaneously from separate electrodes. Rasters and histogram panels
are arranged at locations corresponding to the relative cue stimulus location in the screen. (B) Examples of cross-correlation histograms (CCH). Horizontal dotted white lines
represent CCH baseline. The strength of functional interactions between 2 neurons was estimated by calculating the percentage of spikes under the center 5 ms (left) or 20 ms
(right) of the CCH (colored in white).
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based on surrogate spike trains, constructed by segmenting
the length of all trials into 50 ms bins and drawing spikes
from corresponding bins from other trials, in essence destroy-
ing time structures beyond 50 ms. (Fig. 4B). Finally, we
created predictors by randomly shuffling the time of each
spike within 50 ms of the actual recorded time (Fig. 4C). In
each case, a higher strength in the PPC than the dlPFC for
short distances was observed when we quantified cross-
correlation strength corrected by these predictors. We rely on
the later predictor method for analyses thereon.

Another way to evaluate overall differences in pairwise
connectivity across areas is to calculate the fraction of signifi-
cant CCH peaks found at each electrode separation. Like
cross-correlation strength, the probability of observing a sig-
nificant peak increases with the number of inputs shared by
the pair of recorded neurons and with their relative strength.
We thus identified individual pairs of neurons with significant
cross-correlation peaks in the center (4 ms) bin of the ±200 ms
CCH, beyond the expected predictor value, evaluated at the
α = 0.001 significance level. This analysis indicated that a
larger percentage of PPC neurons exhibited significant CCH
peaks at short distances, mirroring the average cross-correlation
strength (Fig. 4D).

The results reveal a significant difference in functional con-
nectivity in dlPFC versus PPC. The lower overall cross-
correlation strength in dlPFC could result from a more widely
distributed connectivity (i.e., from a greater percentage of par-
ietal functional inputs originating from short distances, within
a few 100 μm of each other), or alternatively, the spatial
organization could be the same but the magnitude of the
shared functional connections could differ (i.e., the shared
inputs could be relatively stronger in PPC, particularly at short
distances). Either way, the findings establish for the first time
a distinction in the intrinsic connectivity between the PFC and
an afferent cortical area.

Influence of Firing Rate
A consideration in comparing correlated discharges is the
firing rate of the neurons in each group, as a higher firing rate
can inflate the apparent correlation between 2 neurons (de la
Rocha et al. 2007). It was important to determine if systematic
differences in firing rate could account for the differences in
cross-correlation strength we observed in the 2 areas, so we
examined the mean firing rate of neurons making up the syn-
chronous pairs recorded in the dlPFC and in the PPC (Fig. 5).
We found no significant difference between areas in either
the fixation or stimulus presentation period (Fig. 5A, t-test,
P > 0.1 for all comparisons). If anything, average firing rate in

Figure 3. Effective connectivity as a function of distance. (A–C) Cross-correlation
strength of prefrontal and parietal cortex as a function of electrode separation plotted
for each of 3 animals. Each dot represents data from a pair of neurons. Blue and red
dots and lines represent the parietal cortex and the prefrontal cortex, respectively.
Dotted lines represent 95% confidence intervals. Up to 10 outliers appear outside the
minimum or maximum bounds of the axes in each panel. (D) Cross-correlation
strength averaged across monkeys. Data were first binned separately for each
monkey, then averaged together at each distance, weighing equally each monkey.
Error bars at each point represent standard error of the mean across monkeys. Blue
and red curves represent average of curves in panels A–C. Inset illustrates average
cross-correlation strength computed for neuron pairs with distances of ≤0.3 mm for
each monkey. The center 5 ms of CCH peak was used. Blue and red bars represent
the parietal and prefrontal cortex, respectively. Stars indicate statistically significant
differences at the 0.05 significance level (t-test).
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Figure 5. Firing rate of neurons used in cross-correlation analysis. Peristimulus time
histogram represents average firing rate for neurons recorded from the posterior
parietal cortex (solid) and the prefrontal cortex (dotted). (A) All neurons in our
sample. (B) Neurons from pairs with electrode separation ≤0.3 mm. Shaded area
along each trace represents 1 standard error of mean computed across neurons. Gray
shaded area represents the cue presentation period. (C) Relationship between
cross-correlation strength and firing rate. Geometric mean rate was computed for
each neuron pair with electrode separation ≤0.3 mm.

Figure 4. Predictor-corrected effective connectivity. (A) Shift-predictor corrected
cross-correlation strength of prefrontal and parietal neuron pairs, averaged across
monkeys. (B). Cross-correlation strength as in A, but using a surrogate spike train
predictor. (C). Cross-correlation strength as in A, but using a spike train predictor
based on jittering the timing of each spike within a 50 ms window. (D) Proportion of
pairs with significant cross-correlation peaks, based on the predictor of panel C. Data
points represent values averaged across monkeys, weighing each monkey equally.
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our sample was slightly higher in the dlPFC. Examining the
neurons that made up the pairs recorded within 0.3 mm of
each other, where the greatest differences in correlation
strength between areas were observed, we again determined
no higher firing rate for the PPC, and in fact a significantly
higher firing rate (t-test, P < 0.005) for the dlPFC in the stimu-
lus presentation period (Fig. 5B). This suggests that the
higher correlation strength we detected over short distances
may even be underestimated for the posterior parietal sample,
which exhibited lower overall firing rate than the prefrontal
sample depicted in Figure 3. An analysis of covariance
(ANCOVA) confirmed a significantly higher cross-correlation
strength for PPC neurons than dlPFC neurons when firing rate
was used as a covariate (ANCOVA, P < 0.05). When we exam-
ined pairs of neurons in the 2 areas matched for geometric
mean firing rate, we found that the influence of firing rate on
cross-correlation strength was greater in the PPC than in the
dlPFC (Fig. 5C). As a result, the difference in cross-correlation
strength was greatest for the PPC neuron pairs with the
highest firing rate, compared with dlPFC neuron pairs with
equal firing rate.

Effective Connectivity Over Different Time Scales
The results presented so far relied on analysis of cross-
correlation peaks in the center 5 ms of the CCH, which exam-
ines the incidence of correlated spikes in the time scale of
monosynaptic interactions, i.e. within 2.5 ms of each other.
We also investigated whether differences in effective connec-
tivity were evident over longer time scales, which are domi-
nated by polysynaptic interactions (Fig. 6). We examined the
strength of cross-correlation interactions relying on the center
20 ms of predictor-corrected CCH peaks, and the noise corre-
lation between pairs of neurons in the 2 areas, which
represents correlated firing in the time scale of task epochs
(0.5–1.5 s long in our experiment). Pairs of posterior parietal
neurons recorded within 0.3 mm of each other exhibited
higher values for those measures than did pairs of prefrontal
neurons, though only the measure of 20 ms CCH peak
reached statistical significance (t-test, P < 10−5); the noise cor-
relation did not (P > 0.05). For these interactions over long
time scales, the dependence on distance also became weaker,
in agreement with some prior studies that show a weak
relationship between electrode distance and noise correlation
(Ecker et al. 2010).

The decreased difference between areas at longer time
scales could in principle be the result of more dispersed cor-
related firing in dlPFC than PPC. Common input may be com-
parable in the 2 areas but subject to more jitter between
dlPFC neurons (perhaps arising from delays due to axonal
conduction, synaptic activation, and dendritic filtering),
broadening the CCH around the peak but still resulting in
equal overall common input in the 2 areas. To test for this
possibility we plotted the predictor-corrected, average CCH
across neuron pairs recorded within 0.3 mm of each other
(Fig. 7). The results showed that both the height of the peak
and the integral of the CCH were lower in the dlPFC than PPC
for each of the monkeys, as expected, but importantly, there
was no indication of a systematic difference in the width of
the mean CCHs. The results suggest that, indeed, there are
significant differences in functional connectivity between the
2 areas measured over relatively short time scales (a few tens

of ms), but that as polysynaptic interactions integrate inputs
over longer time scales, they smear the dependence of effec-
tive synaptic strength on neuronal separation.

Dependence of Connectivity on Neuronal Response
Properties
Our analysis indicated systematic differences in effective con-
nectivity between local-circuit neurons in the PPC and dlPFC.
It is known that neurons with similar spatial tuning exhibit
higher effective connectivity (Georgopoulos et al. 1993; Lee
et al. 1998; Constantinidis et al. 2001; Smith and Kohn 2008;
Cohen et al. 2010), so the differences we observed might be
related to the tuning functions or task-related responses of the
neurons in PPC versus dlPFC. To investigate this possibility,
we examined the dependence of effective connectivity on
neuronal functional properties in the 2 areas. First we
measured how effective connectivity over short (5 ms) tem-
poral interactions depended on the similarity in task-related
responses between neurons (Fig. 8A). We relied on signal cor-
relation as a measure of tuning similarity, defined as the
Pearson correlation coefficient of average firing rates across

Figure 6. Effective connectivity computed in different time scales. Mean
cross-correlation strength and noise correlation averaged across monkeys. Circles/
solid lines and triangles/dotted lines represent the parietal cortex and prefrontal
cortex, respectively. Curves were fit based on all raw data points and superimposed
on the average data points. Error bars represent standard error of the mean across
monkeys. (A) Predictor-corrected average cross-correlation strength as a function of
electrode separation. The center 20 ms of CCH peak was used. (B) Average noise
correlation in the fixation period is plotted as a function of electrode separation.
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the 9 stimulus locations used during the cue period. Cross-
correlation strength was generally higher in both areas for
neurons with the highest levels of signal correlation, although
the relationship only reached significance for dlPFC
(regression analysis, P < 0.005), and not for the PPC (P > 0.1).
There was no significant difference in the signal correlation

values between areas that could explain the differences in
cross-correlation strength that we observed (PPC mean: 0.24,
dlPFC mean: 0.21; t-test, P > 0.1), and an ANCOVA using
signal correlation as a covariate further indicated that cross-
correlation strength varied significantly between the 2 areas
when the effect of signal correlation was accounted for
(ANCOVA, P < 0.05).

Previous studies also reported that the similarity in the tem-
poral envelope of responses across task epochs is a predictor
of effective connectivity between 2 neurons, at least in the
dlPFC (Constantinidis et al. 2002). We therefore computed
cross-correlation strength as a function of temporal correlation
(Fig. 8B). We found a significant difference in cross-
correlation strength values depending on temporal correlation
(regression analysis, P < 10−5 for dlPFC, P < 0.005 for PPC). In
this case too, there was no significant difference in temporal
correlation value between areas (PPC mean: 0.53, dlPFC
mean: 0.50; t-test, P > 0.05) and a significant difference in
cross-correlation strength values between areas was still
present when the effect of temporal correlation was ac-
counted for (ANCOVA, P < 0.05). We also computed a single,
combined variable of signal and temporal similarity for each
pair of neurons, by calculating the Pearson correlation coeffi-
cient on the average firing rates obtained from successive
0.5-s time windows for separate stimulus locations, and tested
its influence on effective connectivity. This measure too was
significantly predictive of cross-correlation strength, more so
for dlPFC (regression analysis, P < 10−5) than PPC (P < 0.05),
but there was no significant difference between areas (PPC
mean: 0.28, dlPFC mean: 0.26; t-test P > 0.3) and a significant
difference in cross-correlation strength was still present
between areas when the correlation value was used as a cov-
ariate in an ANCOVA (P < 0.05). The same relationships for
signal and temporal correlation were generally present for
cross-correlation interactions at longer time scales as well
(20-ms CCH and noise correlation; data not shown). These
results indicated that the similarity in functional properties
between neurons was predictive of the strength of effective
connectivity in both PPC and dlPFC, but that the difference in
the distance relationship we observed between areas could
not be explained by systematic differences in these response
properties.

Potential Underlying Differences Between Cortical Areas
In a strict sense, a peak in a CCH simply signals a statistical
dependence between the spike trains from 2 neurons.
However, one of the most likely reasons for such peaks to
arise, particularly when they are centered at zero lag, is that
the 2 neurons have some inputs in common among those that
drive them (Perkel et al. 1967; Aertsen et al. 1989; Brody
1999a, 1999b; Salinas and Sejnowski 2000; Salinas and Sej-
nowski 2004). In that case, the resulting cross-correlation
strength depends heavily on 2 quantities, the fraction of
common inputs and the synaptic weights of those common
inputs. In turn, this observation suggests 2 possible, straight-
forward explanations for the pattern of results that we ob-
served. 1) On average, the number of inputs shared by 2
neurons could vary systematically with the physical distance
between them. That is, the farther apart 2 neurons are, the
fewer input lines they may have in common (schematically
illustrated in Fig. 9A–B). 2) Alternatively, what could vary

Figure 7. Average cross-correlation in each monkey. (A–C) Average cross-correlation
histogram for the prefrontal and posterior parietal cortex from pairs of neurons
recorded within 0.3 mm from each other, shown separately for each monkey in each
panel. Histograms have been smoothed with a 3-point triangular filter.
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systematically with distance is the input strength or synaptic
weight. In that case, the farther apart 2 neurons are, the
weaker the common inputs become (contrast Fig. 9A,C).
These mechanisms are not unique, but they are reasonable
and likely to be in play. Also, they are not mutually exclusive.

To quantitatively explore the plausibility of these intuitive
scenarios, we simulated the responses of pairs of spiking
neurons and varied 2 quantities, the fraction of common
input, f, and the mean synaptic weight per shared input, w;
all other cell properties remained constant (see Materials and
Methods section). Simulated CCHs had peaks centered at zero
lag, as expected, and given the model parameters used, their
widths were on the order of 20 ms. Also as anticipated, the
amplitude of the peak increased with increasing f (Fig. 10A)
and with increasing w, in agreement with previous theoretical
(Melssen and Epping 1987; Ostojic et al. 2009; Trousdale
et al. 2012) and experimental (Binder and Powers 2001;
Turker and Powers 2002) results. In a first set of simulations,
f was varied between 0 and 0.2 while w remained constant;
and in this range, the cross-correlation strength changed in an
almost perfectly linear fashion with f (Fig. 10B). This result
has the following consequence. Suppose that as neurons
become more separated, they share fewer numbers of connec-
tions, such that f decreases exponentially with distance. Then,
the relationship between cross-correlation strength and dis-
tance itself would be exponential (Fig. 10C).

In Figure 10C, the 3 exponential curves differ only in their
maximum fraction of shared inputs, which is simply the value
of f at zero distance. This is enough to reproduce the ob-
served differences between the PPC and dlPFC (Fig. 3D),
although it is not the only possibility (see below). The model
also provides a rough estimate of the actual maximum fraction
of shared inputs needed to account for the magnitudes of the
observed correlations: cross-correlation strengths of 1–3% cor-
respond to 5–15% of shared inputs (Fig. 10B). This is under
the simplest assumption, which is that the weights of the
shared inputs are statistically the same as those of the non-
shared (i.e., w = 1).

In a second series of simulations, we explored a slightly
more complicated situation in which w varied systematically
between 0.25 and 2 while f took 1 of 3 possible values
(Fig. 10D, compare data points of different colors). This con-
firmed that both f and w determine the resulting cross-
correlation strength, and that the dependence on w is quadratic
(Ostojic et al. 2009). Note that, in this case, cross-correlation
strengths of 1–3% occur within a reasonable range of values of
w, roughly between 0.7 and 1.5, which correspond to synaptic
weights 30% smaller or 50% larger than average (Fig. 10D).
Therefore, the experimental results can also be reproduced by
variations in w. To see this, suppose that as neurons become
more separated, the fraction of shared connections does not
change, but the weights of those connections (w) decrease
exponentially with distance. Then, the relationship between
cross-correlation strength and distance would again be monoto-
nically decreasing, and still close to exponential (Fig. 10E).

In Figure 10E, the 3 curves again differ in the maximum
fraction of shared inputs, but this is simply to demonstrate the
main conclusion from these simulations: that, in general,
differences between 2 such curves—of cross-correlation
strength versus distance—of approximately the same magni-
tude as those seen between dlPFC and PPC may result from
moderate differences in f, in w, or in both.

Importantly, the CCH also depends on various other
factors, such as 1) the synaptic time constants of the common
inputs, 2) jitter in the common spike trains arising from delays
in axonal conduction or dendritic filtering, or 3) correlated fluc-
tuations in the firing rates of the common inputs. These, to-
gether with f and w, may combine in various ways to produce
a given CCH, so their contributions cannot be uniquely inferred
from the CCH alone. However, we found no systematic differ-
ences between PPC and dlPFC neurons in their response stat-
istics, as measured by their mean firing rates and variability
(coefficient of variation, or CV; see Materials and Methods
section), and this does constrain the impact that such additional
factors may have. To investigate this and determine the robust-
ness of the results in Figure 10, we ran additional simulations

Figure 8. Relationship between response selectivity and effective connectivity. (A) Average cross-correlation strength versus signal correlation. (B) Average cross-correlation
strength versus temporal correlation. Black and gray bars represent the parietal cortex and prefrontal cortex, respectively. Error bars represent standard errors of the mean across
neuron pairs.
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varying several model parameters. In all of these runs, while
varying a given parameter, the synaptic weights were scaled
appropriately to maintain the same mean rate and CV in the
model postsynaptic neurons.

First, we verified that the results did not depend on the
numbers of neurons used. We varied f either by varying the
number of shared inputs while keeping the total number
of inputs constant, or vice versa, by varying the total number

Figure 9. Schematic models of intrinsic functional organization. (A) Diagram illustrates distributions of synaptic inputs onto a pair of prefrontal neurons. (B) Distributions of
posterior parietal inputs. Parietal neurons may integrate inputs over a shorter range of distances compared with prefrontal neurons. (C) An alternative model for posterior parietal
organization. Spatial distribution of inputs is identical to prefrontal cortex, but long distance connections exhibit proportionally lower functional strengths (represented with dotted
lines).
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of inputs while keeping the number of shared inputs fixed.
The results were identical in the 2 conditions, demonstrating
that what matters is indeed the fraction of shared inputs, f, not
the actual numbers of neurons. Similarly, the cross-correlation
strength showed the same dependence on w seen on
Figure 10D, even though the actual synaptic weights varied
across runs (to maintain the firing statistics constant, as men-
tioned above). Thus, what matters is the relative strength of the
shared connections, w, not the actual conductance values.

Second, we repeated our original simulations (Fig. 10) with
synaptic time constants that varied by several fold (2–4) with
respect to the standard values. This altered the peaks and
widths of the simulated CCHs to various degrees; however, in
all cases, we found that the dependencies of cross-correlation
strength on f (Fig. 10B) and on w (Fig. 10D) did not change
appreciably—as long as the statistics of the postsynaptic
responses remained fixed. With this condition in place, the
particular time constants used had little impact on the values

Figure 10. Simulating cross-correlations through shared input. Pairs of integrate-and-fire model neurons were simulated and CCHs were obtained for different values of f and w,
where f is the fraction of shared inputs and w the mean synaptic weight per shared input, expressed as a fraction of the mean synaptic weight. (A) Examples of simulated CCHs
obtained with f= 0.2 (left) and f= 0.1 (right); w=1 in both cases. Spike counts were normalized so that the baseline was equal to 1. (B) Cross-correlation strength as a
function of f. Gray shades indicate 3 simulation runs with maximum f values of 0.05 (light gray), 0.1 (dark gray), and 0.2 (black). For all points, w= 1. (C) Expected dependence
of cross-correlation strength on distance, assuming that f decreases exponentially with distance; space constant was 0.8 mm. Values on the y-axis are the same as in B.
Continuous lines are exponential fits to the simulated data points (dots). (D) Cross-correlation strength as a function of w. Gray shades indicate 3 simulation runs with f values of
0.03 (light gray), 0.05 (dark gray), and 0.1 (black). (E) Expected dependence of cross-correlation strength on distance, assuming that w decreases exponentially with distance;
space constant was 0.8 mm. Values on the y-axis are the same as in D. Continuous lines are exponential fits to the simulated data points (dots).
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of f and w needed to achieve a particular cross-correlation
strength.

Finally, we ran another set of simulations in which conduc-
tion delays were included to determine the impact of spike
jitter on cross-correlation strength. It is known that higher dis-
persion in the common spikes driving a pair of neurons
widens the CCH and reduces its peak (Brette 2009). Thus, if
dlPFC received the same fraction of common inputs as PPC
but these had a wider range of conduction delays, the
measured cross-correlation strength would be lower in dlPFC,
particularly for short time scales (i.e., 5 ms centered around
zero lag). To explore this scenario, we ran simulations with
spike jitter drawn from various distributions. We found that
cross-correlation strength decreased with increasing jitter, as
expected, but the effect was moderate. For example, when
the jitter was drawn from a Poisson distribution with a mean
of 1, 2, or 4 ms, the maximum cross-correlation strength went
from 4.1 to 3.8 to 3.6%. A drop of 1% of more, as seen in the
data, would require an enormous difference in spike jitter.

In sum, the simulation results indicate that, although a sys-
tematic difference in spike jitter cannot be entirely ruled out,
the observed differences between dlPFC and PPC are likely
due mainly to distinct patterns of anatomical connectivity in
the 2 areas, i.e., to differences either in the proportions of
shared inputs, in their relative synaptic weights, or both.

Discussion

Our study demonstrates differences in the functional organiz-
ation of intrinsic effective connectivity of the dlPFC and PPC,
2 nodes of the frontoparietal network involved in spatial at-
tention and working memory (Constantinidis and Procyk
2004; Bisley and Goldberg 2010). We relied on effective con-
nectivity, quantified via the strength of cross-correlation
peaks in the millisecond scale, as a way to compare the
strength of intrinsic connections between areas. This is a
physiological measure that only indirectly relates to the
underlying neuronal circuits of each pair analyzed (Aertsen
et al. 1989); nonetheless, it provides a means for statistical in-
terareal comparisons. In agreement with prior neurophysiolo-
gical studies (Lee et al. 1998; Constantinidis and
Goldman-Rakic 2002; Smith and Kohn 2008), both PPC and
dlPFC demonstrated a decrease in effective connectivity as a
function of distance. This decrease in effective connectivity
appears to mirror the exponential decay of anatomical con-
nectivity at columnar scales (Markov et al. 2011). The actual
values of effective connectivity that we report, on the order of
1–2% of spikes synchronized in the synaptic timescale due to
shared inputs between pairs of neurons in the 2 areas, are
consistent with the results of modeling relying on biologically
realistic assumptions about the amount of convergence of sy-
naptic sources onto single cortical neurons, and in line with
prior findings from various cortical areas (Levick et al. 1972;
Reid and Alonso 1995; Constantinidis et al. 2001). Impor-
tantly, neurons in the PPC shared a larger percentage of their
functional inputs when they were located at short (≤0.3 mm)
distances, compared with pairs of neurons recorded at equiv-
alent distances from the dlPFC. The effect could not be ac-
counted for by differences in firing rate and was present
when we analyzed the fixation period alone, prior to stimulus
presentation or other task events. We should make clear that
the actual value for what we considered a “short” distance is

somewhat arbitrary and was shaped by the database available
for this analysis. A difference in effective connectivity between
areas was most evident for short cross-correlation lags, compar-
able to the time scale of monosynaptic interactions, and less so
for longer time scales of functional connectivity shaped by
polysynaptic interactions. Effective connectivity was also influ-
enced by similarity in stimulus selectivity (signal correlation)
and temporal envelope of responses across the task (temporal
correlation), but this relationship held true for both areas, so
the differences in connectivity are likely to reflect underlying
structural differences. These differences in functional connec-
tivity offer mechanistic insights into the specialized functional
roles of the 2 areas.

Prefrontal Functional Specialization
The PFC is generally considered the seat of higher cognitive
functions (Miller and Cohen 2001) and is placed at the apex
of the cortical hierarchy (Felleman and Van Essen 1991; Serre
et al. 2007). The dorsolateral aspect of the PFC in particular is
viewed as essential for attention, working memory, and ex-
ecutive function (Constantinidis and Procyk 2004; Bisley and
Goldberg 2010). Nonetheless, a host of cognitive functions
have also been localized in the activity of the PPC (Rawley
and Constantinidis 2009). Indeed, human imaging studies
reveal concurrent dlPFC and PPC activation in a wide range of
tasks requiring spatial attention and working memory
(Jonides et al. 1993; Courtney et al. 1997; Owen et al. 1998;
Ungerleider et al. 1998; Munk et al. 2002; Raye et al. 2002).
Evidence for a functional specialization between these areas
has been subtle but accumulating (Katsuki and Constantinidis
2012b). The distinct roles played by the 2 areas are clearly evi-
denced by effects of lesions in humans and animal models re-
sulting in more severe deficits in working memory after
prefrontal damage, as opposed to visuospatial processing and
attention after parietal lesions (Curtis and D’Esposito 2004;
Husain and Nachev 2007). Differences have also emerged re-
garding the ability of PFC neurons to encode actively held
stimuli, whereas its cortical afferents, including the PPC and
inferior temporal cortex, seem to be representing the most
recent stimulus to appear, whether it is a stimulus actively
held in memory or a behaviorally irrelevant distractor (Miller
et al. 1993; Miller et al. 1996; Constantinidis and Procyk
2004). More recently, functional differences have also been
observed during stimulus categorization, although it is
notable that the relative timing and magnitude of dlPFC and
PPC activation differed across categorization tasks (Merchant
et al. 2011; Goodwin et al. 2012; Swaminathan and Freedman
2012).

Little is known about how functional specialization
between these areas can be achieved. Unlike the case of feed-
forward connections transmitting the output of one sensory
area into the input layers of the next, no obvious hierarchical
pattern of information processing is present between the PPC
and PFC, whose connections are essentially reciprocal rather
than serial (Barbas and Pandya 1989; Cavada and Goldman-
Rakic 1989; Felleman and Van Essen 1991). Several previous
studies addressing the unique characteristics of prefrontal cir-
cuitry have focused on the effects of prefrontal dopaminergic
innervation. Computational models have demonstrated per-
sistent discharges with an increased signal-to-noise ratio in
networks that incorporate dopamine inputs, an effect
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generally attributed to an enhanced NMDA conductance
(Yang and Seamans 1996; Durstewitz et al. 2000; Seamans
et al. 2001; Chen et al. 2004). The slow time constant of the
NMDA receptor can leave the postsynaptic neuron in a
depolarized state for a longer interval, facilitating persistent
activity (Wang 2001). However, the effects of dopamine
modulation are complex, and it is difficult to map specific
effects of dopamine onto functional properties in the dlPFC
(Katsuki and Constantinidis 2012b). We should point out that
our present results did not reveal increased overall functional
connectivity in the dlPFC during the execution of working
memory tasks, so if dopamine facilitates synaptic transmission
as predicted by these models, the effect may be subtle com-
pared with the differences in intrinsic connectivity we report.

Other, more elemental differences between the prefrontal
and parietal organization could also account for their func-
tional differences. Longer-range projections between prefron-
tal neurons and more extensive dendritic trees could result in
a larger percentage of inputs of prefrontal neurons received
from longer distances, and thus in a smaller fraction of shared
connections. In both areas, retrograde injections of anatomical
tracers reveal clusters of neurons activated over a range of dis-
tances that extend several millimeters (Levitt et al. 1993;
Kritzer and Goldman-Rakic 1995). However, prefrontal pyra-
midal neurons exhibit the most extensive dendritic trees and
highest number of spines of any cortical neurons (Elston
2000, 2003), as well as considerable morphological and elec-
trophysiological diversity (Elston et al. 2011; Zaitsev et al.
2012). Our present results illustrate physiological differen-
tiation in effective connectivity between the 2 cortical areas
that could be directly attributed to such anatomical differences
in intrinsic connections. Specialization of functional classes of
interneurons also appears to be present in the 2 cortical areas
(Zhou et al. 2012). Furthermore, in recent years, active modu-
lation of the level of correlation generated in neural circuits
has been documented (Renart et al. 2010). Therefore, it is
possible that the effects we observed were the result of active
decorrelation mechanisms that operate to a larger extent at
the dlPFC compared with the PPC. It should be noted
however that active decorrelation was observed in the
primary visual cortex (Ecker et al. 2010) and cannot be an ex-
clusive prefrontal property.

Effective Connectivity in the 2 Cortical Areas
Our analysis relied on a large database of recordings allowing
us to uncover systematic differences between the 2 areas by
examining the strength of cross-correlation between simul-
taneously recorded pairs of neurons, an otherwise noisy
measure. Although equivalent data have been reported for
other cortical areas (Smith and Kohn 2008), direct comparison
of the correlation values we report here with those from other
experiments is difficult due to confounding factors such as
firing rate and duration of the analysis window (Cohen and
Kohn 2011). We therefore limit our comparison of the PFC
with the PPC of the same animals performing the same tasks.
As in prior studies (Constantinidis et al. 2001), the interactions
we observed were almost always centered at time zero,
suggesting shared input between the 2 neurons we were re-
cording from (Moore et al. 1970). We were therefore able to
infer indirectly the properties of cortical ensembles in the 2
areas. Posterior parietal neurons recorded over short distances

shared a larger proportion of their functional inputs than pre-
frontal neurons, suggesting that neuronal ensembles activated
at each time point of the task were larger in the dlPFC than
the PPC. This result could not have been an artifact of differ-
ences in firing rates, as rates were comparable in the 2 areas
(and slightly higher overall in dlPFC). The increase in corre-
lated firing could be the result of more extended anatomical
connections in the dlPFC (Fig. 9A) compared with the PPC
(Fig. 9B). Alternatively, the size of cortical ensembles may be
identical in the 2 areas, but longer distance projections may
have greater influence in the PFC (Fig. 9A) than in the PPC
(Fig. 9C) by virtue of the strength of cortical interactions or
the synchronization of their timing (Salinas and Sejnowski
2000). The strength of synaptic connectivity has been directly
implicated in the functional properties of simulated cortical
networks, including the ability to resist interference by dis-
tractors during working memory (Compte et al. 2000);
however, the implications of network differences such as
those depicted in Figure 9 have not been explicitly studied.
Future computational work will be decisive in determining
the precise implications of the differences we describe here,
as well as in revealing the specific relationships between func-
tional properties and intrinsic organization unique to each
area.
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