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Ramachandran S, Meyer T, Olson CR. Prediction suppression
and surprise enhancement in monkey inferotemporal cortex. J Neu-
rophysiol 118: 374–382, 2017. First published April 19, 2017; doi:
10.1152/jn.00136.2017.—Exposing monkeys, over the course of days
and weeks, to pairs of images presented in fixed sequence, so that each
leading image becomes a predictor for the corresponding trailing
image, affects neuronal visual responsiveness in area TE. At the end
of the training period, neurons respond relatively weakly to a trailing
image when it appears in a trained sequence and, thus, confirms
prediction, whereas they respond relatively strongly to the same image
when it appears in an untrained sequence and, thus, violates predic-
tion. This effect could arise from prediction suppression (reduced
firing in response to the occurrence of a probable event) or surprise
enhancement (elevated firing in response to the omission of a probable
event). To identify its cause, we compared firing under the prediction-
confirming and prediction-violating conditions to firing under a pre-
diction-neutral condition. The results provide strong evidence for
prediction suppression and limited evidence for surprise enhancement.

NEW & NOTEWORTHY In predictive coding models of the visual
system, neurons carry signed prediction error signals. We show here
that monkey inferotemporal neurons exhibit prediction-modulated
firing, as posited by these models, but that the signal is unsigned. The
response to a prediction-confirming image is suppressed, and the
response to a prediction-violating image may be enhanced. These
results are better explained by a model in which the visual system
emphasizes unpredicted events than by a predictive coding model.

inferotemporal; macaque; prediction

AREA TE of the macaque inferotemporal cortex, the terminus of
the ventral visual stream (Ungerleider and Mishkin 1982),
plays a critical role in visual object recognition. TE neurons
respond to complex images with distinct individual patterns of
selectivity (Kobatake and Tanaka 1994), in consequence of
which, image identity can be decoded from the activity of the
population as a whole (Lehky et al. 2014). The visual response
properties of neurons in TE are subject to marked influence by
visual experience. Training monkeys to discriminate between
images (Baker et al. 2002; Jagadeesh et al. 2001; Kobatake et
al. 1998), categorize them (Freedman et al. 2003; Sigala and
Logothetis 2002), or form associations between them
(Messinger et al. 2001; Sakai and Miyashita 1991) induces

functional changes, which have the effect of strengthening the
representation of image attributes relevant to task performance.
Even passive visual experience induces dramatic changes in
the functional properties of TE neurons. Repeated viewing of a
single image leads to familiarity suppression: the experienced
image elicits comparatively weak responses (Freedman et al.
2006; Meyer and Olson 2014; Mruczek and Sheinberg 2007).
Repeated viewing of two images close together in time leads to
pair coding: neurons responsive to one image tend to respond
to the other (Erickson and Desimone 1999; Li and DiCarlo
2008; Miyashita 1988). Finally, repeatedly presenting pairs of
images in fixed sequence leads to changes in TE that are the
focus of the present study.

Exposing monkeys over days and weeks to displays in which
a particular leading image is always followed by a particular
trailing image (Fig. 1A) strongly affects the visual response
properties of neurons in TE. The response to a trailing image is
relatively weak if the image appears in a trained sequence and,
thus, confirms a prediction based on experience during the
training period (blue in Fig. 1B), but it is relatively strong if the
image appears in an untrained sequence and, thus, violates a
prediction based on experience during the training period (red
in Fig. 1B) (Kaposvari et al. 2016; Meyer and Olson 2011;
Meyer et al. 2014a; Ramachandran et al. 2016). This phenom-
enon could arise solely from prediction suppression (a reduc-
tion in response strength when the trailing image confirms a
prediction), solely from surprise enhancement (an increase in
response strength when the trailing image violates a prediction)
or from a combination of the two effects. To decide among
these possibilities, we compared responses elicited under the
prediction-confirming and prediction-violating conditions to
responses elicited under a prediction-neutral condition. Images
used in the prediction-neutral condition were presented during
training in all possible combinations with equal frequency, so
that no leading image disproportionately predicted the occur-
rence of any particular trailing image (Fig. 1C). With the
prediction-neutral condition as a basis for comparison, we
asked whether firing was suppressed under the prediction-
confirming condition (blue fill in Fig. 1D) or enhanced under
the prediction-violating condition (red fill in Fig. 1D). We
found that the response to a prediction-confirming image was
robustly suppressed, whereas the response to a prediction-
violating image showed slight but insignificant enhancement.
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MATERIALS AND METHODS

Subjects. We studied two adult rhesus macaques: monkey 1 (male;
laboratory designation Tu) and monkey 2 (female; laboratory desig-
nation Ec). Procedures were in accordance with guidelines set forth by
the United States Public Health Service Guide for the Care and Use of
Laboratory Animals and were approved by the Carnegie Mellon
University Institutional Animal Care and Use Committee.

Task. The monkeys were required, during both the training and
testing phases of the experiment, to engage in passive viewing of pairs
of images presented in sequence. The succession of events in each
trial was fixation spot (300 ms), leading image at screen center (503
ms), an 18-ms delay, trailing image at screen center (503 ms), an
18-ms delay, fixation spot (300 ms), and reward delivery (Fig. 1A). A
trial was aborted without reward if at any point from onset of fixation
at the beginning of the trial to offset of the fixation spot at the end of
the trial, the monkey failed to maintain fixation within a 4° � 4°
central window. The use of a relatively large fixation window was
required because, during presentation of the images, which spanned
4°, no fixation spot was visible.

Training. On each training day, the monkey completed one or more
training runs. Each run comprised a standard block and a prediction-
neutral block. Which block was run first varied from day to day.
During a standard block (Fig. 1B), each leading image was paired with
a particular trailing image. The six sequences were presented six times
each for a total of 36 trials. Ordering within the block was random,
subject to the constraints 1) that within each set of six successfully
completed trials, each condition had to be imposed once and 2) the
same condition could not be imposed on two consecutive trials.
During a prediction-neutral block (Fig. 1C), each leading image was
paired with all six trailing images. The 36 possible sequences were
presented once each for a total of 36 trials. Ordering within the block
was random. Monkey 1 completed 100 runs over the course of 34 days
with the number of runs per day ranging from two to nine. Monkey 2
completed 105 runs over the course of 59 days with the number of
runs per day ranging from one to four.

Although the number of trials completed successfully was under
precise control for each image sequence, the number of unsuccessful
trials was not subject to control because the monkeys introduced

Fig. 1. A: sequence of events during a representative trial. Trial
structure was identical during training and testing phases of the
experiment. B: training in the standard paradigm involved
presenting each leading image and a paired trailing image in
fixed sequence ~600 times (blue cells). Testing involved re-
cording neuronal responses not only to the trained sequences
(blue cells) but also to the untrained sequences (red cells). C:
training in the prediction-neutral paradigm involved presenting
every possible sequence of leading image and trailing image
~100 times. The number of exposures to each image was the
same as in the standard paradigm, but the conditional proba-
bilities were different. Testing involved recording neuronal
responses to all sequences. D: it is known from prior experi-
ments that neurons respond to a trailing image more strongly
when it violates a prediction (red curve) than when it confirms
a prediction (blue curve). The present experiment compared
firing under these conditions to firing under the prediction-
neutral condition (dashed curve), so as to determine whether the
previously reported effect was due to suppression (blue fill:
reduced firing under the prediction-confirming condition)
and/or enhancement (red fill: increased firing under the predic-
tion-violating condition). E: mean population firing rate (193
neurons) as a function of time during trial under prediction-
violating (red), prediction-confirming (blue), and prediction-
neutral (dashed) conditions.
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errors arbitrarily by breaking fixation. On rare trials it happened that
a fixation break occurred after presentation of the second image. In
such a case, although the trial was aborted, the monkey still experi-
enced the two-image sequence. We did not record the frequency of
these events in monkey 2. In monkey 1, the percentage increase in
exposures due to these events was 2.7% in the standard paradigm and
2.0% in the prediction-neutral paradigm. Because these events were
infrequent and because their frequency was comparable between the
two conditions, we do not believe that their occurrence contributed
significantly to the different neuronal effects observed after the two
forms of training.

Testing. During neuronal data collection, the monkeys completed
trials identical to training trials with regard to the timing of events
(Fig. 1A). The status of the images as leading or trailing was the same
as during training. However, during testing, all possible sequences
were presented. Data were collected from each neuron over the course
of a single run, in which each of six prediction-confirming sequences
(blue cells in Fig. 1B) was presented five times for a total of 30 trials,
each of 30 prediction-violating sequences (red cells in Fig. 1B) was
presented once for a total of 30 trials, and each of 36 prediction-
neutral sequences (Fig. 1C) was presented once for a total of 36 trials.
Thus, the grand total of trials in a run was 96. Over the course of the
run, the various possible sequences were interleaved rather than
blocked. The order in which the sequences were imposed was fully
random with replacement on error.

Images. All stimuli were digitized images of background-free
objects. When presented on an LCD monitor 32 cm from the mon-
key’s eyes, each image subtended 4° of visual angle along whichever
axis, vertical or horizontal, was longer. The full stimulus set for
monkey 1 consisted of 12 leading images and 12 trailing images.
Images used for the standard paradigm in monkey 1 were used for the
prediction-neutral paradigm in monkey 2 and vice versa. Counterbal-
ancing the image sets against the training paradigms across the two
monkeys reduced the possibility of confounding activity dependent on
the prediction status of an image with activity dependent on its
identity.

Recording. An electrode was introduced through a vertical guide
tube into the left (monkey 1) or right (monkey 2) temporal lobe. We
determined the locations of the recording sites, by extrapolation from
MRI-visible fiducial markers within the chamber. The identified
locations, as judged by reference to standard maps of cytoarchi-
tecturally defined areas in the temporal lobe, lay within area TE
(von Bonin and Bailey 1947) in the ventral bank of the superior
temporal sulcus, and on the inferior temporal gyrus and lateral to
the perirhinal cortex (Suzuki and Naya 2014). They lay at levels
anterior to the interaural plane by 16 –19 mm in monkey 1 and
13–16 mm in monkey 2.

During the search for neurons preceding each data collection run,
the monkeys viewed image sequences under the same protocol em-
ployed during training. The advantage of this approach was twofold:
it allowed detecting neurons responsive to images in the training set,
and it counteracted any tendency for presentation of prediction-
violating sequences during neuronal recording to wash out the effects
of training. The number of trials completed during the search phase
typically exceeded by a factor of around 10 the number of trials
completed during the subsequent recording phase.

Database. We monitored neuronal activity at one site during each
recording session. Following the recording session, neuronal spikes
were classified offline by use of a hierarchical clustering algorithm
(Plexon Offline Sorter) with the requirement that spikes, to be con-
sidered as deriving from separate neurons, form clearly distinct
clusters. In total, we recorded from 227 neurons (184 from monkey 1
and 43 from monkey 2). We classified a neuron as potentially visually
responsive if, for any leading or trailing image, the mean firing rate in
a window 50–300 ms following image onset exceeded the mean firing
rate in a window extending from 50 ms before to 50 ms after image
onset (one-tailed t-test, � � 0.05). The aim of this procedure was to

include any neuron with a hint of visual responsiveness. To establish
the presence of statistically significant visual responsiveness would
have required correcting for multiple comparisons. This, we did not
attempt because the number of trials per image was too few to allow
realistic testing. The population meeting this criterion and used in all
subsequent analyses consisted of 193 neurons (155 in monkey 1 and
38 in monkey 2), obtained from 95 sites (69 and 26 in monkeys 1 and
2, respectively). Traces from the same 95 sites subjected to low-pass
filtering with a high-frequency cutoff of 170 Hz formed the local field
potential (LFP) database.

Statistical analysis. Analyses of spiking data were based on the
population mean firing rate of 100–500 ms after trailing image onset.
The key questions concerned differences in this measure among
prediction-confirming, prediction-violating, and prediction-neutral
conditions. For each of these conditions, the distribution of values
across the population of 193 neurons and 95 LFP sites deviated from
normalcy (Jarque-Bera test). Before statistically comparing results
obtained under any two conditions, we log-transformed the values.
Following log transformation, no distribution deviated from nor-
malcy. We then used a two-tailed paired t-test (� � 0.05) to compare
the distributions.

RESULTS

The experiment began with a training period extending over
multiple weeks, during which the monkeys passively viewed
pairs of images presented in fixed sequence for 500 ms each
(Fig. 1A). In the standard paradigm, they viewed six sequences
~600 times each (Fig. 1B, blue squares). In the prediction-
neutral paradigm, they viewed 36 sequences ~100 times each
(Fig. 1C). The number of exposures to each image was iden-
tical between paradigms. This ensured that differences in
neuronal response strength could not be explained in terms of
image familiarity.

After completion of training, we measured the responses of
193 visually responsive neurons in anterior TE (155 in monkey
1 and 38 in monkey 2) to trailing images presented in both
trained and untrained sequences. On randomly interleaved
trials, we presented all sequences that could be constructed
from images used in the standard and prediction-neutral train-
ing sets. The six trained sequences from the standard set (Fig.
1B, blue squares) were presented five times each. In these
sequences, the trailing image was prediction-confirming. The
30 untrained sequences from the standard set (Fig. 1B, red
squares) were presented once each. In these sequences, the
trailing image was prediction-violating. The 36 sequences from
the prediction-neutral set (Fig. 1C) were presented once each.
These sequences were prediction-neutral in that the trailing
image neither confirmed nor violated a strong prediction. In
analyzing the results, we focused on the mean population firing
rate. This approach was necessary because visual responses in
TE are image-selective and because the images used in the
standard paradigm and the prediction-neutral paradigm were
different. Averaging across neurons with varying patterns of
selectivity reduced irrelevant variance in firing rate arising
from image selectivity. This approach necessarily leaves open
the possibility that an effect present at the population level
might vary across neurons making up the population.

Population responses to the leading images employed in the
standard paradigm (Fig. 1E, red and blue curves) and in the
prediction-neutral paradigm (Fig. 1E, dashed curve) appeared
similar and were statistically indistinguishable (P � 0.65, t �
0.45, two-tailed paired t-test on firing rate 100–500 ms after
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leading-image onset, n � 193). This observation is important
because it validates the assumption that using six images in
each category rendered insignificant any differences in firing
rate arising from minor image-to-image variations in efficacy.
It allows confidence that differences in responses to the trailing
images, of which there were also six in each category, de-
pended on their prediction status rather than on their incidental
properties. With regard to trailing-image responses, we con-
firmed prior reports that prediction-violating images elicited a
stronger response than prediction-confirming images (Fig. 2A
and difference plot in Fig. 2B). This effect was significant
(mean � 1.7 spikes/s; P � 1.0E-9, t � 6.42, two-tailed paired
t-test on firing rate 100–500 ms after trailing-image onset, n �
193). The unique contribution of the present study lay in
allowing us to compare responses under the prediction-con-
firming and prediction-violating conditions to responses under
the prediction-neutral condition. Firing in the prediction-con-
firming condition was lower than firing in the prediction-
neutral condition, as expected from prediction suppression
(blue fill in Fig. 2A and difference plot in Fig. 2C). This effect
was significant (mean � 1.44 spikes/s, P � 0.014, t � 2.47,
two-tailed paired t-test on firing rate 100–500 ms after trailing-
image onset, n � 193). Firing in the prediction-violating
condition was slightly higher than in the prediction-neutral

condition, as expected from surprise enhancement (red fill in
Fig. 2A and difference plot in Fig. 2D). However, this effect
was not significant (mean � 0.29 spikes/s, P � 0.28, t � 1.09,
two-tailed paired t-test on firing rate 100–500 ms after trailing-
image onset; n � 193). We conclude that prediction suppres-
sion occurred robustly but that surprise enhancement existed
only as a trend.

Having obtained these results from an analysis of the full
data set, we checked to ensure that they were consistent across
subsets of the data. First, we compared monkeys. On each of
the key difference measures referenced in the preceding anal-
ysis—violating minus confirming (Fig. 2B), neutral minus
confirming (Fig. 2C), and violating minus neutral (Fig. 2D)—
the two animals were indistinguishable (P � 0.42, 0.40, and
0.69, respectively, using two-tailed unpaired t-test). Next, we
checked whether the effects persisted in a database restricted to
neurons giving a statistically significant visual response to at
least one trailing image. The resulting subset consisted of 148
neurons (119 in monkey 1 and 29 in monkey 2). Firing was
higher under the violating condition than under the confirming
condition (P � 1.4E-7, t � 5.53, two-tailed paired t-test).
Firing was higher under the neutral condition than under the
confirming condition (P � 0.0073, t � 2.72, two-tailed paired
t-test). Firing was statistically indistinguishable under the vio-

Fig. 2. The trailing-image response under the
prediction-neutral condition was markedly
greater than under the prediction-confirming con-
dition and slightly less than under the prediction
violating condition. A: mean firing rate of 193
neurons in response to prediction-confirming
(blue), prediction-neutral (dashed), and predic-
tion-violating (red) trailing images. Fill highlights
the marked offset of the prediction-neutral firing
rate from the prediction-confirming firing rate
(blue fill) and the minor offset of the prediction-
neutral firing rate from the prediction-violating
firing rate (red fill). Black rectangles subjacent to
curves indicate 50-ms epochs, during which the
population firing rate was significantly reduced
under the prediction-confirming condition, as
compared with the prediction-neutral condition.
In not one 50-ms window was firing significantly
enhanced under the prediction-violating condition
as compared with the prediction-neutral condi-
tion. B: mean difference between the prediction-
violating and the prediction-confirming popula-
tion firing rates. The positive displacement of the
curve represents the standard prediction effect, as
previously reported. C: mean difference between
the prediction-neutral and the prediction-confirm-
ing population firing rates. D: mean difference
between the prediction-violating and the predic-
tion-neutral population firing rates. E: results for
monkey 1. F: results for monkey 2. Ribbons in
B–D represent means � SE. Conventions in E
and F are the same as in A.
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lating and neutral conditions (P � 0.95, t � 0.06, two-tailed
paired t-test). Thus, all three observations persisted in the
reduced database.

It is evident from inspection of the population histograms
that suppression (blue fill) and enhancement (red fill) may have
varied over the course of the response (Fig. 2A) and that the
dependence on time may have been different in the two
monkeys (Fig. 2, E and F). To assess the time-dependent
expression of each effect, we carried out post hoc tests on eight
nonoverlapping 50-ms windows spanning the 100–500-ms
analysis epoch, checking for the presence of statistically sig-
nificant suppression and enhancement in each window (two-
tailed paired t-test, � � 0.00625, reflecting Bonferroni correc-
tion for eight comparisons). Despite the lack of power arising
from the use of a narrow window and correction for multiple
comparisons, this analysis revealed two windows with signif-
icant suppression in the combined data (Fig. 2A, black bars
beneath histograms) and one window with significant suppres-
sion in each monkey (Fig. 2, E and F, black bars beneath
histograms). It did not reveal any window with significant
enhancement.

The firing rate before onset of the response to the trailing
image was slightly higher under the prediction-neutral condi-
tion than under the other conditions (Fig. 2A) because, in one
monkey (Fig. 2E), the leading images used in prediction-
neutral sequences elicited stronger firing late in the response
period than the leading images used in the other sequences.
This observation raises the issue of whether, in computing

response strength, we should have subtracted out the preonset
firing rate. To do so would be appropriate if preonset firing
represented a baseline on which the response to the trailing
image was superimposed. It would be inappropriate if preonset
firing were simply truncated and replaced by the trailing-image
response. To distinguish between these possibilities, we con-
sidered trials involving the best and worst leading images for a
given neuron, restricting consideration to cases in which the
trailing image was predicted by neither. Elevated firing elicited
by the best leading image appeared to carry over into the early
phase of the trailing-image response (Fig. 3A: yellow fill).
However, within the standard analysis window 100–500 ms
after trailing-image onset, the resulting increase of firing rate
(1.0 Hz) did not achieve significance (P � 0.83, t � 0.22, n �
193, paired t-test). We also considered a case in which the
difference in strength between responses elicited by the leading
images approximated more closely the small difference ob-
served in our data (elevation of dashed curve over solid curves
before onset of the response to the trailing image in Fig. 2A).
In this analysis, we took advantage of the fact that neurons in
TE develop pair-coding as a result of the training procedure
used to induce prediction suppression: the leading image pre-
dicting the best trailing image elicits a stronger response than
the leading image predicting the worst trailing image (Meyer
and Olson 2011). We plotted firing rate as a function of time on
trials involving the leading images predicting the best and
worst trailing images for a given neuron, restricting consider-
ation to trials in which the trailing image was neither of these.

Fig. 3. The strength of the response to the trailing image was
unaffected by moderate differences in the level of firing elicited
by the leading image. A: mean firing rate computed across all
193 neurons on trials in which the leading image was the one to
which the neuron responded most strongly (thick curve) or least
strongly (thin curve). Consideration was restricted to trials
involving the four trailing images associated with neither of
those leading images. Differential activity reflecting selectivity
for the best leading image (yellow shading) persisted only until
the onset of the response to the trailing image. B: mean firing
rate computed across all 193 neurons on trials in which the
leading image predicted the trailing image to which the neuron
responded most strongly (thick curve) or least strongly (thin
curve). Consideration was restricted to trials involving the four
other trailing images. Differential activity reflecting selectivity
for the leading image paired during training with the best
trailing image (pair coding) persisted only until the onset of the
response to the trailing image.
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As previously reported, the leading image predicting the best
trailing image elicited stronger firing than the leading image
predicting the worst trailing image (Fig. 3B). However the
enhanced activity did not carry over into the succeeding visual
response. On trials in which the leading image elicited the
stronger response, firing elicited by the trailing image was
actually weaker by 0.08 Hz, although the effect did not achieve
significance (P � 0.30, t � 1.03, n � 193, paired t-test). We
conclude that the response to the trailing image supplanted
rather than rode on top of the response to the leading image
and, accordingly, that baseline correction would be inappro-
priate.

The results described up to this point emerged from the
analysis of data collapsed across all trials in a run. However,
the effects might not have been stable within a run. Over the
course of repeated presentations, the strength of the neuronal
response to a given image might have changed. For instance, it
might have declined due to repetition suppression. To assess
response stability across the run, we analyzed response
strength as a function of repetition number, independent of
prediction status of the images, i.e., prediction-confirming,
prediction-violating, or prediction-neutral. Over the course of a
run, each of six trailing images from the standard paradigm
was presented five times with prediction-confirming status and
five times with prediction-violating status, and each of six
trailing images from the prediction-neutral paradigm was pre-
sented six times. Thus, we could analyze firing rate as a
function of sequential rank in the range 1–5 for six prediction-
confirming and prediction-violating images and in the range
1–6 for six prediction-neutral images. The best-fit lines relat-
ing mean firing rate to repetition number are shown in Fig. 4A.
The slopes were all slightly positive (0.024, 0.022, and 0.065
under the confirming, violating, and neutral conditions, respec-
tively). This is contrary to expectation based on the occurrence
of repetition suppression (Li et al. 1993; Liu et al. 2009;
McMahon and Olson 2007; Vogels 2015). Repetition suppres-
sion must have been saturated before data collection by hun-
dreds of exposures to the images occurring during training and
by further exposures to the training sequences occurring during
the search for neurons before each day’s recording run. As
expected from the near parallelism of the best-fit lines, linear
regression analyses (n � 965) revealed no significant depen-
dence on repetition number of any effect manifested as a
difference in firing rate between conditions. This was true for
the classic effect (violating minus confirming: P � 0.63), the
suppression effect (neutral minus confirming: P � 0.78), and
the enhancement effect (violating minus neutral: P � 0.91).

The results presented in preceding paragraphs were based on
the analysis of data collapsed across an experimental period
spanning several months in each monkey. However, the effects
might not have been stable over the course of the experiment.
For example, repeated exposure to prediction-violating se-
quences during neuronal data collection might have caused an
attenuation of effects dependent on the prediction status of an
image. To assess long-term stability, we divided the neurons
into sextiles based on the phase of the experiment during which
they were studied. The first sextile consisted of the first 25
neurons studied in monkey 1 and the first 6 neurons studied in
monkey 2; the second sextile consisted of the second 25
neurons studied in monkey 1 and the second 6 neurons studied
in monkey 2, and so on. We then plotted response strength for

prediction-confirming, prediction-violating, and prediction-
neutral images as a function of sextile number. We based the
analysis on the firing rate for each condition minus the mean
firing rate across all three conditions. This step was required to
factor out nuisance variance arising from differences among
neurons with regard to mean firing rate. The best-fit lines
relating mean firing rate to sextile number are shown in Fig.
4B. The slope was negative for prediction-confirming images
(slope � �0.19) and positive for prediction-violating images
(slope � 0.05) and prediction-neutral images (slope � 0.14).
As expected from the differences among the slopes, linear
regression analyses (n � 186) revealed a significant depen-
dence on sextile number of certain effects manifest as a
difference in firing rate between conditions. The increase in the
classic effect (violating minus confirming) approached signif-
icance (P � 0.074). The increase in the suppression effect
(neutral minus confirming) achieved significance (P � 0.041).
The decrease in the enhancement effect (violating minus neu-
tral) also achieved significance (P � 0.011). These results did
not depend on the particular measure used to characterize the

Fig. 4. Prediction-based effects persisted across trials in a run (A) and across
runs in the full experiment (B). A: during a data collection run, each trailing
image from the standard paradigm was presented five times in a prediction-
confirming sequence and five times in a prediction-violating sequence, and
each trailing image from the prediction-neutral paradigm was presented six
times in a prediction-neutral sequence. Crossing repetition number with pre-
diction status, thus, afforded 16 conditions corresponding to the 16 points in
this plot. Each point with its error bars represents the mean and standard error
of response strength 100–500 ms after image onset. Each of 193 neurons
contributed to each of the 16 measures, and six firing rates were elicited by six
distinct trailing images. B: we divided neurons into sextiles on the basis of the
time during the experiment when they were recorded. The first sextile con-
sisted of the first 25 neurons recorded in monkey 1 and the first six neurons
recorded in monkey 2, the second sextile consisted of the second 25 neurons
recorded in monkey 1 and the second six neurons recorded in monkey 2, and so
on. The sextiles encompassed the first 150 out of 155 neurons recorded in
monkey 1 and the first 36 out of 38 neurons recorded in monkey 2. For each
neuron, we computed the mean firing rate elicited by images in each category:
prediction-confirming, prediction-violating, and prediction-neutral. We then
subtracted from each measure the average of the three means. This step
eliminated variance due to differences among neurons in mean firing rate. Each
point in the plot represents the average across neurons in a given sextile of the
mean-normalized response to images possessing a given prediction status.
Error bars represent standard error of the mean. Analysis was based on firing
100–500 ms after image onset.
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effects. Normalizing the firing rate under each condition to the
mean of the firing rates observed under the three conditions left
all trends and statistical outcomes the same with the sole
exception that the decline in enhancement no longer achieved
significance (P � 0.25). We conclude that the observed effects
changed in strength, although not in sign over the course of the
full experimental period.

Analysis of the local field potential (LFP) is a useful adjunct
to the analysis of neuronal spiking activity. Arising from
synaptic events spanning thousands of neurons, the LFP pro-
vides a low-noise window on events common to a local
population. We previously reported that the LFP response to a
prediction-confirming image is weaker than the LFP response
to a prediction-violating image (Meyer and Olson 2011; Meyer
et al. 2014a; Ramachandran et al. 2016). The response measure
was the amplitude of the excursion from maximal negativity at
around 200 ms to maximal positivity at around 300 ms fol-
lowing trailing image onset. On applying the same measure to
LFP responses from the 95 sites at which neuronal data were
collected in the present experiment (69 and 26 sites in monkeys
1 and 2, respectively), we found, in accordance with previous
observations, that response amplitude was greater under the
prediction-violating than under the prediction-confirming con-
dition (Fig. 5, A–C, red vs. blue curves). This effect was
significant (mean difference � 3.4 �V, P � 1.6E-4, t � 3.93,
two-tailed paired t-test on excursion amplitude, n � 95). On
comparing response amplitude in the prediction-confirming
condition to response amplitude in the prediction-neutral con-
dition, we observed marked suppression (Fig. 5, A–C, dashed
vs. blue curves). This effect was significant (mean differ-
ence � 6.9 �V, P � 9.4E-7, t � 6.5, two-tailed paired t-test on
excursion magnitude, n � 95). On comparing response ampli-
tude in the prediction-violating condition to response ampli-
tude in the prediction-neutral condition, we found no indication
whatsoever of enhancement. In monkey 1, response amplitude
under the prediction-neutral condition actually exceeded re-
sponse amplitude under the prediction-violating condition (Fig.
5B), an effect for which we have no ready explanation. We
conclude that the LFP response was suppressed under the
prediction-confirming condition and was not enhanced under
the prediction-violating condition.

DISCUSSION

A trailing image confirming a prediction elicits a relatively
weak TE neuronal response, whereas a trailing image violating
a prediction elicits a relatively strong response (Meyer and
Olson 2011; Meyer et al. 2014a; Ramachandran et al. 2016).
This pattern could arise from prediction suppression (reduced
firing under the prediction-confirming condition) and/or sur-
prise enhancement (elevated firing under the prediction-violat-
ing condition). To determine whether one or both of these
phenomena were present, we compared response strength un-
der the prediction-confirming and prediction-violating condi-
tions to response strength under a prediction-neutral condition.
We found clear indications of prediction suppression but ob-
tained only weak evidence for surprise enhancement.

Evidence for prediction suppression was present at the level
of both spiking activity and the LFP. Suppression occurred
from the outset of the visual response onward. Prediction
suppression as observed here may be related to other suppres-

sive phenomena previously encountered in TE. These include
repetition suppression, a reduction of response strength occur-
ring when an image is repeated within a session (Li et al. 1993;
Liu et al. 2009; McMahon and Olson 2007; Vogels 2015), and
familiarity suppression, a reduction of response strength in-
duced by repeated viewing of an image over many sessions
(Anderson et al. 2008; Li et al. 1993; Meyer et al. 2014b;
Mruczek and Sheinberg, 2007; Peissig et al. 2007; Woloszyn
and Sheinberg, 2012). Repetition suppression and familiarity
suppression are thought to result from fatigue-based adaptation
at synapses or cell bodies in the pathway leading to TE
(Grill-Spector et al. 2006; Kohn 2007; Vogels 2015). Adapta-
tion could also give rise to prediction suppression if the leading
image selectively excited and, thus, fatigued synapses or cell
bodies responsive to the associated trailing image. This is not
out of the question because the training regimen used in the
present experiment leads to pair-coding at the level of TE:
neurons responsive to the leading image tend also to respond to
the associated trailing image, as demonstrated both here and in

Fig. 5. The local field potential (LFP) response to the trailing image had a
much greater peak-to-peak excursion under the prediction-neutral and predic-
tion-violating conditions than under the prediction-confirming condition. A:
average across all 95 recording sites. B: average across 69 sites in monkey 1.
C: average across 26 sites in monkey 2.
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a previous study (Meyer et al. 2014b). Cross-adaptation be-
tween the leading image and the trailing image, due to their
sharing fatiguing neural elements at some point in the process-
ing chain leading to TE, could, thus, give rise to prediction
suppression. However, it is not immediately evident how the
asymmetry of prediction suppression (image A suppresses the
response to image B but not vice versa) (Kaposvari et al. 2016;
Meyer et al. 2014b) could arise from symmetric pair-coding
(neurons responsive to image A are responsive to image B and
vice versa).

Before finally concluding that prediction suppression oc-
curred, we must consider whether differential firing under the
prediction-confirming and prediction-neutral conditions could
possibly have arisen from physical differences between the
images. One obvious possibility is that images presented under
the prediction-neutral condition were physically more salient
than those presented under the prediction-confirming condi-
tion. We can rule out this possibility because the pairing of
image set with paradigm was reversed across animals and yet
the results were comparable. A second possibility is that we
might, by chance, have isolated in each monkey neurons
selective for images in that monkey’s prediction-neutral set.
This is a technical possibility, but its probability is vanishingly
small in light of the number of neurons from which we
recorded. We note finally that both possibilities contemplated
above depend on the existence of consistent differences be-
tween images in the two sets with regard to physical properties
determining neuronal response strength. By including six im-
ages in each set, we intended to minimize the likelihood of
there being any consistent differences. This approach had the
intended effect, as evidenced by the fact that leading images in
the two sets elicited responses of virtually identical strength
(Fig. 1E).

Evidence for surprise enhancement was markedly weaker
than for prediction suppression. On the positive side, there was
a trend toward enhancement during the late phase of the visual
response in both monkeys. Furthermore, there was a decline
over the course of the experiment in the measured strength of
enhancement (Fig. 4B), as if prediction-violating events were
initially capable of eliciting enhanced responses but lost their
potency over the course of multiple sessions. On the negative
side, there was no hint of enhancement at the level of the LFP.
Furthermore, because of an unavoidable feature of experimen-
tal paradigm, even the apparent trend toward enhancement at
the level of spiking activity might have been a product of
suppression. The conditional probability of the trailing image
in a prediction-violating sequence was zero during training
runs because the particular leading image was never followed
by the particular trailing image. The conditional probability of
the trailing image in a prediction-neutral sequence could not be
set to zero in any practicable design. In our design, it was 0.17
because, during training runs, any particular leading image was
followed by any particular trailing image on one-sixth of trials.
Because the prediction-neutral image had a small non-zero
conditional probability, the response to it might have been
slightly suppressed.

Surprise enhancement, although marginal in our study,
might still occur robustly in other experimental contexts, for
example, ones utilizing other image-sequence protocols or
requiring monkeys to engage in active processing of images.
On one hand, prior studies have failed to demonstrate enhanced

firing in TE under conditions in which an image violates a
prediction set up by prior events within a trial or block
(Kaliukhovich and Vogels 2014; 2011). On the other hand, TE
neurons have recently been shown to respond with enhanced
strength to images that violate predictions set up by long-term
training on image sequences as in our study (Kaposvari et al.
2016). Using continuous sequences of images with fixed tran-
sitional statistics, the authors observed suppression early in the
response to a prediction-confirming image and enhancement
late in the response to a prediction-violating image, with
enhancement being the more pronounced effect. The domi-
nance of enhancement in that study may be related to the
timing of the displays. Images were presented back-to-back for
300 ms each in unremitting succession. Consequently, the
phasic response to each image was weak. In the already weak
response, there may have been little room for further suppres-
sion.

The results described here place a definite limit on the
degree to which TE neurons can be regarded as engaged in
predictive coding of visual events. In predictive coding
schemes, as events unfold, the brain forms predictions, moni-
tors outcomes, and generates error signals representing predic-
tion-outcome discrepancies (Bastos et al. 2012). The error
signals serve as training signals for fine-tuning the predictive
model. For such a scheme to work, the error signal must be
signed. For example, the reward prediction error signal posited
in classic learning theory (Rescorla and Wagner 1972) and
observed in dopamine neurons of the ventral tegmental area
(Waelti et al. 2001) represents the value of the delivered
reward minus the value of the predicted reward. By direct
analogy, TE neurons might carry a visual prediction error
signal corresponding to the response associated with the pre-
sented image minus the response associated with the predicted
image. In this case, the response to an intermediate trailing
image should have been low following prediction of the best
trailing image and high following prediction of the worst
trailing image. No such effect occurred (Fig. 3B). We conclude
that prediction-based modulation of response strength in TE
falls into the category of a surprise signal rather than a
prediction error signal. However, there are several formal
measures of surprise. Some measures, notably Shannon sur-
prise, are sensitive only to the occurrence of an improbable
event (Itti and Baldi 2009). Prediction suppression, as observed
in this study, can be regarded as an inverse function of
Shannon surprise (Ramachandran et al. 2016). Other measures
also register the omission of a probable event. These include
Bayesian surprise (Itti and Baldi 2009; O’Reilly et al. 2013)
and unsigned prediction error (Belova et al. 2007; Roesch et al.
2010; Roesch et al. 2012). The weakness of surprise enhance-
ment can be taken as indicating that TE neurons are largely
insensitive to this form of surprise in the context of our task.
The main function of prediction-related activity in TE in this
context apparently is to filter out events that are probable and,
therefore, uninformative, not to signal the omission of probable
events.
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