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Ramachandran S, Meyer T, Olson CR. Prediction suppression in
monkey inferotemporal cortex depends on the conditional probability
between images. J Neurophysiol 115: 355–362, 2016. First published
November 18, 2015; doi:10.1152/jn.00091.2015.—When monkeys
view two images in fixed sequence repeatedly over days and weeks,
neurons in area TE of the inferotemporal cortex come to exhibit
prediction suppression. The trailing image elicits only a weak re-
sponse when presented following the leading image that preceded it
during training. Induction of prediction suppression might depend
either on the contiguity of the images, as determined by their co-
occurrence and captured in the measure of joint probability P(A,B), or
on their contingency, as determined by their correlation and as
captured in the measures of conditional probability P(A|B) and P(B|A).
To distinguish between these possibilities, we measured prediction
suppression after imposing training regimens that held P(A,B) con-
stant but varied P(A|B) and P(B|A). We found that reducing either
P(A|B) or P(B|A) during training attenuated prediction suppression as
measured during subsequent testing. We conclude that prediction
suppression depends on contingency, as embodied in the predictive
relations between the images, and not just on contiguity, as embodied
in their co-occurrence.

vision; inferotemporal; prediction; plasticity

HUMAN INFANTS AND ADULTS are able to learn rapidly, through
passive experience, the statistical relations governing the tran-
sition from one element to the next in a structured stream of
visual images (Bulf et al. 2011; Fiser and Aslin 2002; Howard
et al. 2008; Kim et al. 2009; Kirkham et al. 2002; Turk-Browne
et al. 2005, 2008) or auditory stimuli (Pelucchi et al. 2009;
Romberg and Saffran 2010; Saffran et al. 1996). The neuronal
mechanisms underlying this capacity are not yet well under-
stood (Gavornik and Bear 2014; Meyer and Olson 2011;
Summerfield and Egner 2009; Wacongne et al. 2012). Single-
neuron recording studies in monkeys have, however, begun to
cast light on this issue. Repeated viewing of two images in
fixed sequence, so that the leading image becomes a strong
predictor for the trailing image, induces prediction suppression
among neurons of inferotemporal area TE. They respond
weakly to a trailing image when it follows the leading image
that preceded it during training and respond strongly when it
follows some other leading image (Meyer and Olson 2011;
Meyer et al. 2014). For ease of reference, we term this
phenomenon prediction suppression although it remains to be
determined whether the effect arises from suppression of neu-

ral responses when the trailing image is predicted or from
enhancement of neural responses when it is unpredicted.

In humans, transitional statistical learning depends not just
on the repeated pairing between successive elements in a
stimulus stream but also on their conditional probability (Aslin
et al. 1998; Fiser and Aslin 2001; Meyer and Baldwin 2011).
For instance, infants exposed to a syllable stream learn a
particular syllabic sequence as legitimate if the leading syllable
is always followed by a particular trailing syllable. However,
the effect is abolished by inserting additional instances in
which the leading syllable is followed by a different trailing
syllable (Aslin et al. 1998). Whether similar principles apply to
prediction suppression in TE is unknown. To resolve this issue,
we measured prediction suppression in monkeys exposed re-
peatedly to displays in which leading and trailing images were
paired with equal frequency but their conditional probability
varied.

MATERIALS AND METHODS

Subjects. We studied two adult rhesus macaques: monkey 1 (male;
laboratory designation Tu) and monkey 2 (female; laboratory desig-
nation Ec). Procedures were in accordance with guidelines set forth by
the United States Public Health Service Guide for the Care and Use
of Laboratory Animals and were approved by the Carnegie Mellon
University Institutional Animal Care and Use Committee.

Task. The monkeys were required, during both the training and
testing phases of the experiment, to engage in passive viewing of pairs
of images presented in sequence. The succession of events in each
trial was as follows: fixation spot (300 ms), leading image at screen
center (503 ms), an 18-ms delay, trailing image at screen center (503
ms), an 18-ms delay, fixation spot (300 ms), and reward delivery (Fig.
1A). A trial was aborted without reward if, at any point from onset of
fixation to offset of the fixation spot at the end of the trial, the monkey
failed to maintain fixation within a 4 � 4° central window. The use of
a relatively large fixation window was required because, during
presentation of the images, which spanned 4°, the fixation spot was
absent.

Training. On each training day, the monkey completed one or more
runs. A run consisted of 60 successfully completed trials. The trials
conformed to 10 conditions representing all allowable pairings of
leading and trailing images (filled cells in Fig. 1B). Each condition
was imposed six times during a run. The conditions were interleaved
randomly subject to the constraint that within each block of 10
successfully completed trials each condition had to be imposed once.
The number of runs completed on a day ranged from 1 to 12 in
monkey 1 and from 1 to 3 in monkey 2. Monkey 1 viewed each
sequence 834 times during 139 runs extending over 27 days. Monkey
2 viewed each sequence 408 times during 68 runs extending over 40
days.
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Although the number of trials completed successfully was, by
design, identical across the 10 image sequences, the number of
unsuccessful trials was not subject to control because the monkeys
introduced errors arbitrarily by breaking fixation. If a fixation break
occurred after presentation of the second image, then, although the
trial was aborted, the monkey still experienced the two-image se-
quence. The percent increase in exposures due to the occurrence of
such trials was 3.2% (3.7 and 2.7% in monkey 1 and monkey 2,
respectively) in the 1:1 condition (red in Fig. 1B), 5.0% (3.8 and 6.3%
in monkey 1 and monkey 2, respectively) in the 1:2 condition (blue in
Fig. 1B), and 5.2% (4.4 and 6.0% in monkey 1 and monkey 2,
respectively) in the 2:1 condition (green in Fig. 1B). Inasmuch as
these occurrences were rare and inasmuch as their trend was to be
more numerous under conditions in which prediction suppression was
weaker, it is appears unlikely that they contributed substantially to the
observed results.

Testing. During neuronal data collection, the monkeys completed
trials identical to training trials with regard to the timing of events
(Fig. 1A). The status of the images as leading or trailing was the same
as during training. However, any leading image might be followed by
any trailing image. A run consisted of 134 trials encompassing 80

trained sequences (each of 10 trained sequences occurring 8 times)
and 54 untrained sequences (each of 54 untrained sequences occurring
once). The conditions were imposed in random order with replace-
ment on error.

Images. All stimuli were digitized images of background-free
objects. When presented on an LCD monitor 32 cm from the mon-
key’s eyes, each image subtended 4° of visual angle along whichever
axis, vertical or horizontal, was longer. The full stimulus set for
monkey 1 consisted of eight leading images and eight trailing images
paired according to rules summarized in Fig. 1B. The same images
were used in monkey 2 but with their sequential status (leading or
trailing) reversed and the pattern of pairing altered so that no images
paired in monkey 1 were paired in monkey 2. The images shown in
Fig. 1 are representative of the images used in training but are not
identical.

Recording. An electrode was introduced through a vertical guide
tube into left (monkey 1) or right (monkey 2) temporal lobe. We
determined the locations of the recording sites by extrapolation from
MRI-visible fiducial markers within the chamber. The identified
locations, as judged by reference to standard maps of cytoarchitec-
turally defined areas in the temporal lobe, lay within area TE (Bonin
and Bailey 1947) in the ventral bank of the superior temporal sulcus
and on the inferior temporal gyrus and lateral to the perirhinal cortex
(Suzuki and Naya 2014). They lay at levels anterior to the interaural
plane by 16–19 mm in monkey 1 and 13–16 mm in monkey 2.

Database. We monitored neuronal activity at one site during each
recording session. Following the recording session, neuronal spikes
were classified offline by use of a hierarchical clustering algorithm
(Plexon Offline Sorter) with the requirement that spikes, to be con-
sidered as deriving from separate neurons, form clearly distinct
clusters. We classified a neuron as visually responsive if, for either the
leading or the trailing image, the mean firing rate in a window 50–300
ms following image onset exceeded the mean firing rate in a 100 ms
baseline window centered on image onset (one-tailed t-test, � � 0.05).
Eighty-six neurons meeting this criterion were recorded from 51 sites
(30 and 21 in monkeys 1 and 2, respectively). Sites yielding 1, 2, and
3 neurons numbered 23, 21, and 7, respectively. Traces from the same
51 sites passed through a low-pass filter with a high-frequency cut-off
of 170 Hz formed the local field potential (LFP) database.

Statistical analysis. To determine whether prediction suppression
occurred under a given condition (1:1, 1:2 or 2:1) required assessing
whether a corresponding measure (spike rate or peak-to-peak LFP
amplitude) differed significantly between trials when the trailing
image was unpredicted (U) and when it was predicted (P). To make
this determination, we computed the mean of U and the mean of P for
each neuron or LFP site. The distribution of means across observa-
tions (86 neurons or 51 recording sites) in some cases deviated from
normalcy (Jarque-Bera test). To correct for this problem, we con-
ducted all analyses on log-transformed values. Following log trans-
formation, no distribution deviated from normalcy. Comparison be-
tween U and P was based on a two-tailed paired t-test (� � 0.05). To
determine whether prediction suppression (S � U-P) differed signif-
icantly between condition A (for example 1:1) and condition B (for
example 1:2), we computed S for each neuron or recording site. We
then log-transformed the values. Following log transformation, no
distribution deviated significantly from normalcy. We then carried out
a two-tailed paired t-test (� � 0.05) comparing the means of S under
the two conditions.

RESULTS

The experiment began with a training period during which
the monkeys passively viewed pairs of images presented in
fixed sequence (Fig. 1A). For each monkey, the training set
consisted of eight leading images and eight trailing images
(Fig. 1B). These were presented in 10 sequences (filled cells in
the matrix of Fig. 1B). The sequences were presented with

Fig. 1. During the training period, the conditional probability of sequentially
presented images was manipulated independently of the frequency with which
they were paired. A: timing of events within each trial during training and
subsequent neuronal data collection sessions. B: 8 leading and 8 trailing images
were employed. During training, 10 sequences were presented repeatedly with
equal frequency (filled cells). In the 1:1 condition (red) a given leading image
(A) always preceded a given trailing image (B) so that P(B|A) � P(A|B) � 1.
In the 1:2 condition (blue) a given leading image could be followed by either
of 2 trailing images so that P(B|A) � 0.5 and P(A|B) � 1. In the 2:1 condition
(green) a given trailing image could follow either of 2 leading images so that
P(B|A) � 1 and P(A|B) � 0.5. During neuronal recording, each of the 10
trained sequences was presented 8 times and each of the 54 untrained
sequences was presented once. Prediction suppression took the form of a
reduction in the strength of the neuronal response elicited by a trailing image
when it was in a trained sequence (filled cell) than when it was in an untrained
sequence (dotted cell). The trained and untrained sequences used to assess
prediction suppression in the 1:1, 1:2, and 2:1 conditions are rendered in red,
blue, and green, respectively.
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equal frequency. Thus the 16 individual images were matched
for absolute probability and the 10 training pairs were matched
for joint probability. However, the relations of conditional
probability pertaining between the leading and trailing images
were different. Across the two sequences highlighted in red in
Fig. 1B, one leading image (A) and one trailing image (B)
always appeared in sequence. Accordingly, we designate this
as the 1:1 condition. Under this condition, the appearance of A
guaranteed that B would follow: P(B|A) � 1. Likewise, the
appearance of B guaranteed that A had preceded: P(A|B) � 1.
Across the four sequences highlighted in blue, a given leading
image could precede either of two trailing images. We term
this the 1:2 condition. Under this condition, P(A|B) � 1 but
P(B|A) � 0.5. Across the four sequences highlighted in green,
either of two leading images could precede a particular trailing
image. We term this the 2:1 condition. Under this condition,
P(B|A) � 1 but P(A|B) � 0.5. Training of each monkey
extended over multiple weeks and included more than 400
exposures to each of the 10 image sequences.

After completion of training, we measured the responses of
86 visually responsive neurons in anterior TE (56 in monkey 1
and 30 in monkey 2) to leading and trailing images presented in
both trained and untrained sequences. During each run, the 10
trained sequences appeared 8 times each and 54 untrained
sequences, representing all other possible combinations of the
leading and trailing images, appeared once each for a total of
134 trials. If prediction suppression were present, then we
would expect a trailing image to elicit a weaker response when
it occurred in a trained sequence than when it occurred in an
untrained sequence. Cells in the matrix of Fig. 1B indicate the
trained conditions (filled) and untrained conditions (dotted)
that were compared to measure prediction suppression under
the 1:1 condition (red), the 1:2 condition (blue), and 2:1
condition (green). All analyses were conducted on data com-
bined across the two monkeys. Every effect subsequently
described as significant in the combined data either achieved
significance in both monkeys or achieved significance in one
monkey while the trend in the other monkey was of matching
sign although insignificant.

Population histograms representing the mean firing rate
during trials in which the trailing images were unpredicted
(thick line) or predicted (thin line) revealed prediction suppres-
sion after all three training procedures (Fig. 2, A–C). Prediction
suppression is evident as an excursion of the difference signal
(response to trailing image on unpredicted trials minus re-
sponse to trailing image on predicted trials) into the positive
range under each condition (Fig. 2, D–F). Note that this
measure is based exclusively on the response to the trailing
image and not on the response to the leading image. The mean
difference signal 100–500 ms after trailing-image onset was
significantly greater than zero under all three conditions (1:1
mean � 3.1 spikes/s, P � 3.0 E-8, T � 6.11; 1:2 mean � 2.0
spikes/s, P � 2.7 E-5, T � 4.44; 2:1 mean � 1.6 spikes/s, P �
0.0066, T � 2.78; two-tailed paired t-test; n � 86).

Although the net effect at the level of the population took the
form of prediction suppression, some neurons might have exhib-
ited prediction enhancement. To explore this issue, we repeated
the statistical analysis on each neuron. Despite the limit on
power arising from the small number of trials, we found, under
each condition, that the percentage of neurons exhibiting sig-
nificant (� � 0.05) prediction suppression was significantly

greater than the percentage (2.5%) expected by chance (1:1
count � 10, P � 3.8 E-7; 1:2 count � 9, P � 1.2 E-5; 2:1
count � 11, P � 8.1 E-9; �2 test with Yates correction). In
contrast, under no condition was the number of neurons ex-
hibiting significant prediction enhancement significantly
greater than expected by chance (1:1 count � 3, P � 0.81; 1:2
count � 5, P � 0.10; 2:1 count � 4, P � 0.35). Our data thus
provide no support for the idea that some neurons exhibited
prediction enhancement.

To determine whether prediction suppression was attenuated by
manipulations reducing the conditional probability between
the leading and trailing images, we plotted, across all neurons, the
suppression index measured under each condition against the
suppression index measured under each other condition. We
defined the suppression index as the mean firing rate 100–500
ms after trailing-image onset on unpredicted trials (U) minus
the same measure on predicted trials (P). The suppression
index under the 1:1 condition was greater than under the 1:2
condition (mean difference � 0.91 spikes/s, P � 0.017, T �
2.44; two-tailed paired t-test; n � 86) and the 2:1 condition
(mean difference � 1.40 spikes/s, P � 0.0022, T � 3.16). The
1:2 and 2:1 conditions did not differ significantly from each
other (mean difference � 0.49 spikes/s favoring 1:2, P � 0.16,
T � 1.44). We conclude that a training procedure reducing
either P(A|B) or P(B|A) attenuates prediction suppression at the
level of spiking activity.

The population response to an unpredicted image (U) and
the population response to the same image when predicted (P)
were found in a previous study to be related by a scaling factor
of �1.5 (Meyer and Olson 2011). To determine whether, in the
present study, the scaling factor U/P varied across conditions,
we computed the population means of U and P under each
condition and then computed their ratio. The ratio was 1.32,
1.22, and 1.16 under conditions 1:1, 1:2, and 2:1, respectively.
The rank ordering of conditions with regard to U/P was thus
identical to their rank ordering with regard to the standard
measure U-P.

Training in the 1:1, 1:2, and 2:1 conditions involved multiple
trailing images. We designed the task so that the number of
trials under each condition would be adequate for data analysis
if results were combined across all relevant trailing images. We
now turn to the question of whether the results were consistent
across the images, with the qualification that measures were
noisy due to the low number of trials. We measured prediction
suppression independently for each of the 16 trailing images
used in the 2 monkeys using the standard measure of firing rate
on unpredicted trials minus firing rate on predicted trials. The
strength of prediction suppression varied across images within
each training condition (Fig. 2J). However, only in one case
did prediction suppression measured after 1:2 or 2:1 training
exceed prediction suppression measured after 1:1 training.
That the five cases of strongest prediction suppression should
have included all four 1:1 cases is unlikely to have arisen by
chance (upon random ranking of the 16 cases, the probability
that 4 selected cases would occupy the top 5 ranks is only
0.0027). Subtle differences between the monkeys (Fig. 2J)
could have arisen from the fact that the recording sites were at
slightly different AP levels, as described in MATERIALS AND

METHODS, but could also reflect noise in the neuronal data or
differences in the physical properties of the images. We con-
clude that the tendency for prediction suppression to be stron-
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Fig. 2. Prediction suppression, measured at the level of population spiking activity, was stronger in the 1:1 condition than in the 1:2 and 2:1 conditions. A–C:
mean firing rate of 86 neurons stimulated with trailing images from the 1:1 set (A), the 1:2 set (B), and the 2:1 set (C). In each plot, the thin curve represents
activity on trials in which the trailing image was presented in a trained sequence and therefore was predicted, while the thick curve represents activity on trials
in which the trailing image was presented in an untrained sequence and therefore was unpredicted. D–F: mean prediction suppression signal (firing rate on
unpredicted trials minus firing rate on predicted trials) of 86 neurons stimulated with trailing images from the 1:1 set (D), the 1:2 set (E), and the 2:1 set (F).
Ribbon represents means � SE. G: prediction suppression signal for the 1:2 condition (firing rate on unpredicted trials minus firing rate on predicted trials) is
plotted against the prediction suppression signal for the 1:1 condition. H: 2:1 signal plotted against the 1:1 signal. I: 2:1 signal plotted against the 1:2 signal. J:
means � SE of prediction suppression for trials involving each trailing image. G–I: count n indicates the number of neurons in the corresponding sector of the
plot (either above or below the identity line).
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ger in the 1:1 than in the 1:2 and 2:1 conditions was genuinely
associated with training condition as distinct from trailing-
image identity.

In the analyses described above, we computed the strength
of the response when the image was unpredicted by averaging
across all available unpredicted conditions (dotted cells in the
matrix of Fig. 1B). This design had the consequence that, in
computing the strength of the unpredicted response to a trailing
image associated with the 1:1 condition, we made dispropor-
tionate use of leading images associated with the 1:2 and 2:1
conditions, and so on. To be sure that the outcome did not
depend on this imbalance, we repeated the analysis with a
corrective step. For each trailing image, we computed the
strength of the unpredicted response when it followed a
leading image with 1:1 training status, when it followed a
leading image with 1:2 training status, and when it followed
a leading image with 2:1 training status. Then we averaged
the three values. This step did not alter the pattern of results.
Prediction suppression under the 1:1 condition (mean � 2.95
spikes/s) was greater than under the 1:2 condition (2.04
spikes/s) and the 2:1 condition (1.55 spikes/s). The comparison
between the 1:1 and 1:2 conditions no longer attained statistical
significance (P � 0.66, T � 0.43; two-tailed paired t-test; n �
86) but the comparison between the 1:1 and 2:1 conditions did
remain significant (P � 0.0086, T � 2.69; two-tailed paired
t-test; n � 86).

Analysis at the level of the LFP is a useful adjunct to
analysis at the level of neuronal spiking activity. Arising from
synaptic events spanning thousands of neurons, the LFP pro-
vides a low-noise window on events common to a local
population. Reflecting primarily synaptic events, it provides a
window on a processing stage distinct from that reflected in
spiking activity. It does not go without saying that a reduction
of spiking activity will be accompanied by a reduction of the
LFP since the reduction of neuronal firing might result from an
increase in activation of inhibitory synapses. Accordingly, we
analyzed data collected from the 51 sites at which we had
monitored neuronal activity (30 and 21 sites in monkeys 1 and
2, respectively). Previous reports have indicated that prediction
suppression is manifest as a reduction in the magnitude of the
excursion from maximal negativity at �200 ms to maximal
positivity at �300 ms in the LFP response to trailing-image
onset (Meyer and Olson 2011; Meyer et al. 2014). In the
present study, in plots representing the raw voltage (Fig. 3,
A–C) and the difference between predicted and unpredicted
voltages (Fig. 3, D–F), this effect appears strong for images
trained under the 1:1 condition but weak for images trained
under the 1:2 and 2:1 conditions. As a basis for statistical
analysis, we computed a suppression index for each site as U-P
where U and P represented the magnitude of the voltage
excursion 100–500 ms after trailing-image onset on unpre-
dicted and predicted trials, respectively. To measure the excur-
sion, we computed the average across all trials of voltage as a
function of time and then took the difference between the
maximum and the minimum within the window. We chose this
measure so as to allow for possible differences from site to site
in the timing of the response. Upon comparing the suppression
indices measured under each condition to the suppression
indexes measured under each other condition (Fig. 3, G–I) we
found that the mean under the 1:1 condition was significantly
greater than the mean under the 1:2 and 2:1 conditions (P �

3.9 E-5, T � 4.51 and P � 0.01, T � 2.62; two-tailed paired
t-test; n � 51) whereas the 1:2 and 2:1 conditions did not differ
significantly from each other (P � 0.57, T � 0.57). Upon
breaking down the results according to the identity of the
trailing image, we found that prediction suppression occurred
consistently for images associated with the 1:1 condition
whereas it was inconsistent for images associated with the 1:2
and 2:1 conditions. In conclusion, results obtained at the level
of the LFP are concordant with neuronal results indicating that
training under the 1:1 condition induces stronger prediction
suppression than training under the 1:2 and 2:1 conditions.

DISCUSSION

The aim of this experiment was to determine whether pre-
diction suppression (Meyer and Olson 2011; Meyer et al. 2014)
depends solely on the contiguity between the leading and the
trailing images, as determined by their repeated pairing, or also
on their mutual contingency, as determined by the ability of
one to predict the other. Our results indicate that contingency
matters. Prediction suppression is reduced if the contingency
between the images is degraded.

In manipulating the conditional probabilities P(A|B) and
P(B|A) while holding joint probability P(A,B) constant, we
unavoidably altered certain other display statistics. These in-
cluded the absolute probabilities P(A) and P(B) and the con-
ditional probability P(A|�B). In the 1:1 condition P(A) and
P(B) were both 0.1 in the sense that each image appeared on
one-tenth of training trials. In the 1:2 condition, P(A) and P(B)
were 0.2 and 0.1, respectively. In the 2:1 condition, P(A) and
P(B) were 0.1 and 0.2, respectively. Images with an absolute
probability of 0.2, were presented twice as often as other
images during training. Making images familiar reduces the
strength with which TE neurons respond to them (Meyer and
Olson 2011; Meyer et al. 2014). Trailing images with an
absolute probability of 0.2 might conceivably have elicited
particularly weak responses because they were particularly
familiar. If so, then prediction suppression might have been
correspondingly low as a result of proportional scaling. This
mechanism could potentially explain weak prediction suppres-
sion in the 2:1 condition but not in the 1:2 condition. In the 1:1
and 1:2 conditions, P(B|�A), the conditional probability of a
given trailing image following the nonoccurrence of a given
leading image, was 0 for trained pairs and 1/9 for untrained
pairs. The corresponding probabilities for the 2:1 condition
were 1/9 and 2/9. Inasmuch as P(B|�A) distinguishes the 1:1
and 1:2 conditions from the 2:1 condition, it cannot easily
account the fact that prediction suppression was uniquely
strong in the 1:1 condition.

We suggested previously that prediction suppression in TE
serves to reduce the salience of a predicted and therefore
uninformative trailing image (Meyer and Olson 2011; Meyer et
al. 2014). If so, then prediction suppression can be seen as a
specific phenomenon arising from the general ability of the
neocortex to predict future events (Bar 2009; Friston 2005;
Hawkins and Blakeslee 2005). It is natural to think of predic-
tion as giving rise to an active representation of an impending
event. However, it is equally plausible to imagine it as pro-
ducing a passive state conducive to filtering out the predicted
event. Damped responding to predicted events is frequently
observed at the level of perceptual, cognitive, and motivational
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systems (den Ouden et al. 2012). Filtering out could be adap-
tive both in preventing the capture of attention by things that
require no processing (Foley et al. 2014) and in allowing the
refinement of the very brain mechanisms that mediate predic-
tion making. The idea that surprising events (prediction errors)
fine tune the predictive apparatus lies at the heart of animal
learning theory (Courville et al. 2006; Kamin 1969; Pearce and
Hall 1980; Schultz and Dickinson 2000).

If prediction suppression indeed arises from the tendency of
the visual system to filter out the representation of a predicted
event, then it should be possible to reduce the strength of
prediction suppression by reducing the predictability of the
trailing image during training. That is exactly what we accom-
plished in the 1:2 condition. Reducing P(B|A) to 0.5 induced a
corresponding reduction in prediction suppression relative to
the 1:1 control. The outcome of the 2:1 condition is difficult,

Fig. 3. Prediction suppression, measured at the level of the local field potential (LFP), was stronger in the 1:1 condition than in the 1:2 and 2:1 conditions. LFP
responses from 51 sites. A–J: format and conventions are as in Fig. 2.
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however, to explain in this framework. In the 2:1 condition,
following a leading image, the probability of the paired trailing
image, P(B|A), was 1.0 just as in the 1:1 control condition.
Nevertheless, prediction suppression was reduced. The feature
distinctive of the 2:1 condition was the low probability of the
leading image given the trailing image: P(A|B) � 0.5. To
explain this result requires considering an alternative frame-
work.

The dependence of prediction suppression on both P(B|A)
and P(A|B) can be explained parsimoniously in terms of a
covariance-based synaptic learning rule (Courville et al. 2006;
Kamin 1969; Pearce and Hall 1980; Schultz and Dickinson
2000; Sejnowski 1977; Sejnowski et al. 1989). Consider a
network in which a neuron responsive to leading image A
inhibits a neuron responsive to trailing image B (Fig. 4).
Inhibition serves here as a proxy for the unknown mechanism
underlying prediction suppression. The learning rule governing
the strength of the inhibitory synapse is given by:

�WB,A(t) � e � [YA(t) � �YA	] � [YB(t) � �YB	]

where e is the learning rate constant, �WB,A(t) is the change in
the weight at time t, YA(t) and YB(t) are the firing rates of
neurons A and B at time t, and �YA� and �YB� are the mean
firing rates over some prior interval. Under all three training
regimens, there are trials in which image A is paired with
image B. Coactivation of neurons responsive to A and B
induces an increase of the weight (W) of the inhibitory synapse
between them (Fig. 4A). Under the 1:2 condition, there are also
trials involving the sequence A,�B where �B is the other
trailing image paired with A. On these trials, the neuron
responsive to A is active but the neuron responsive to B is not.
This induces a decrease in the weight W (Fig. 4B). Under the
2:1 condition, there are trials involving the sequence �A,B
where �A is the other leading image paired with B. On these
trials, the neuron responsive to B is active but the neuron
responsive to A is not. This induces a decrease in the weight W
(Fig. 4C). Thus the asymptotic level of W is lower under the
1:2 and 2:1 conditions than under the 1:1 condition. Whether
plasticity actually conforms to a covariance-based rule in the
most commonly studied form of cortical plasticity, long-term
potentiation, has been subject to debate (Kerr and Abraham
1993; Paulsen et al. 1993; Stanton and Sejnowski 1989).
Insertion of trials in which postsynaptic activity occurs without
presynaptic activity (Fig. 4C) has been reported to weaken LTP
in accordance with the covariance principle (Bauer et al. 2001;

Christofi et al. 1993; Pockett et al. 1990), but insertion of trials
in which presynaptic activity occurs without postsynaptic ac-
tivity (Fig. 4B) has been reported not to do so (Buonomano and
Merzenich 1996).

Explanations of prediction suppression based on the ability
of the leading image to predict the trailing image and on a
covariance-based learning rule are not necessarily incompati-
ble. It may be that TE relies, in learning to suppress responses
to predicted images, on a mechanism that generally is sensitive
to the predictability of the trailing image but that employs
computations not perfectly suited to doing so. It is useful in
considering this point to note that there are parallel quirks in
the process by which, in Pavlovian conditioning, the associa-
tion between the conditioned stimulus (CS) and the uncondi-
tioned stimulus (US) is acquired. The strength of the CS-US
association does not depend simply on the joint probability
P(CS,US) as would be expected from isolated operation of the
rule depicted in Fig. 4A. It also depends on the conditional
probability P(US|CS) as expected from operation of the rule
depicted in Fig. 4B. This is evident in the induction of an
acquisition deficit by partial reinforcement (Miguez et al.
2012). Finally, and critically, it also depends on the conditional
probability P(CS|US) as expected from operation of the rule
depicted in Fig. 4C. This is evident in the induction of an
acquisition deficit by contingency degradation (Bermudez and
Schultz 2010; Rescorla 1968).
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